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Abstract
Restless multi-arm bandits (RMABs) is a popular decision-
theoretic framework that has been used to model real-
world sequential decision making problems in public health,
wildlife conservation, communication systems, and beyond.
Deployed RMAB systems typically operate in two stages: the
first predicts the unknown parameters defining the RMAB in-
stance, and the second employs an optimization algorithm to
solve the constructed RMAB instance.
In this work we provide and analyze the results from a first-
of-its-kind deployment of an RMAB system in public health
domain, aimed at improving maternal and child health. Our
analysis is focused towards understanding the relationship
between prediction accuracy and overall performance of de-
ployed RMAB systems. This is crucial for determining the
value of investing in improving predictive accuracy towards
improving the final system performance, and is useful for di-
agnosing, monitoring deployed RMAB systems.
Using real-world data from our deployed RMAB system, we
demonstrate that an improvement in overall prediction accu-
racy may even be accompanied by a degradation in the perfor-
mance of RMAB system – a broad investment of resources to
improve overall prediction accuracy may not yield expected
results. Following this, we develop decision-focused evalua-
tion metrics to evaluate the predictive component and show
that it is better at explaining (both empirically and theoreti-
cally) the overall performance of a deployed RMAB system.

Introduction
Restless Multi Armed Bandits (RMABs) is a general frame-
work for solving sequential decision making problems and
has been employed in a wide variety of application domains
such as planning preventive interventions for healthcare
(Mate et al. 2022), anti-poaching patrols (Qian et al. 2016),
communication systems (Liu and Zhao 2010a; Liu, Liu, and
Zhao 2012), sensor monitoring tasks (Glazebrook, Ruiz-
Hernandez, and Kirkbride 2006), etc. Most of the works on
RMAB have focused on studying the optimization problem
of allocating limited resources, assuming perfect knowledge
of the underlying parameters of the RMAB model (Bertsi-
mas and Niño-Mora 2000; Nino-Mora 2001; Verloop 2016;
Mate et al. 2020). As a result, RMABs have seen limited
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deployment in practice, especially in applications such as
healthcare and conservation where the RMAB parameters of
the agents being catered to, are unknown in the real-world.
Existing approaches that implement RMAB solutions to re-
source allocation problems typically adopt a two-staged,
predict-then-optimize framework (Wang, Huang, and Lui
2020; Osband, Russo, and Van Roy 2013; Jung and Tewari
2019; Mate et al. 2022). In the first stage, these approaches
learn a machine learning model that predicts the necessary
RMAB parameters and then in the second stage, solve the
RMAB optimization problem using these predictions.

We pose the question of understanding the relationship
between prediction accuracy and overall RMAB system per-
formance. Such an understanding is important for two rea-
sons. First, we want to understand if investing in improved
prediction accuracy warrants improved system performance.
Second, once an RMAB-based system is deployed in the
real-world, we are interested in monitoring its performance
and providing diagnosis to understand the potential sources
of improvements in the data-to-deployment pipeline. In gen-
eral, we expect that if the RMAB model parameters are ac-
curately predicted, the system’s decisions are indeed guaran-
teed to be optimal; similarly, we expect that given a fixed op-
timization engine, higher overall prediction accuracy would
lead to improved RMAB performance.

Our contributions. Our first contribution is to show, us-
ing for the first time an RMAB system deployed in the pub-
lic health domain, that improving machine learning predic-
tion accuracy alone – particularly measured using standard
measures of error like RMSE or MAE – may not lead to im-
proved overall system performance. In fact there may be a
degradation in performance. Evaluating the performance of
RMABs in context of a real-world deployment (described
below), we demonstrate this important phenomenon, and
as our second contribution propose an alternative, decision-
focused evaluation approach of the machine learning com-
ponent to address this issue. Broadly speaking, a key take
away lesson of our work is that instead of investing resources
including compute, data or human resources for broad im-
provements in prediction accuracy, our proposed decision-
focused evaluation metrics may provide a better guide for
investment in RMAB deployment. Moreover, many systems
deployed in the real-world follow a two-staged, predict-



then-optimize framework (Ford et al. 2015; Fang et al. 2016;
Perrault et al. 2019), our work highlights that even in these
domains we shouldn’t directly assume, or design systems
based on a correlation between prediction accuracy and
overall performance.

We demonstrate our results and describe the methodolog-
ical contributions via one such application of the predict-
then-optimize framework for RMABs. We collaborate with
ARMMAN, an Indian NGO, that aims to improve access
to maternal health information in underprivileged commu-
nities. Through their flagship program mMitra, ARMMAN
delivers critical health information to new and expectant
mothers via automated phone calls. However, the engage-
ment rates among mMitra’s beneficiaries dwindle over time
and as a fix, ARMMAN delivers live service calls to en-
courage engagement. Due to limited resources, only a small
fraction of beneficiaries can be selected for live service calls
every week. This is cast as an RMAB problem where we
must decide which beneficiaries to choose every week for
live service calls.

Using our proposed decision-focused evaluation approach
for RMABs, we analyze the performance of RMAB-based
system deployed for ARMMAN, i.e., all our analysis is
based on real-world data where decisions concerning real
individuals were taken via an RMAB. The deployed RMAB
system employs the Whittle index based method — which
is the most prominent solution concept for RMABs. We
compare and contrast different methods of defining errors
in top-k Whittle indices. As our final contribution in this pa-
per, we show that an error definition based on the Spear-
man’s footrule measure (Diaconis and Graham 1977)1 is
best suited in this context for decision-focused evaluation.
Our proposed approach is indeed able to predict the real-
world performance of our RMAB system better than predic-
tion accuracy analysis.

Related Work
Sequential resource allocation problems arise in many real-
world scenarios in healthcare domain. For example, adher-
ence monitoring is an extensively studied problem (Martin
et al. 2005) where the goal is to carefully allocate the lim-
ited number of available healthcare workers or resources to
monitor and improve patients’ adherence to medication for
diseases like cardiac problems (Corotto et al. 2013), tuber-
culosis (Killian et al. 2019; Ong’ang’o et al. 2014; Chang,
Polesky, and Bhatia 2013) and HIV (Tuldrà et al. 1999).
These mentioned works largely focus on developing ma-
chine learning model to classify beneficiaries as high risk,
or predict their future adherence patterns. However, these
approaches essentially rely on making one-shot predictions
and fail to capture the sequential aspect the of decision mak-
ing needed to maximize long term rewards. Other works
have also used reinforcement learning to design health mon-
itors and provide personalized suggestions and notifications
to users (Liao et al. 2020; Pollack et al. 2002); notably, these
works do not deal with the problem of allocating limited re-

1Spearman’s footrule is used to quantify the disarray between
two permutations

sources, as there is no constraint on the number of notifica-
tions being sent.

Restless Multi-Armed Bandit is a popular framework
(Whittle 1988; Jung and Tewari 2019) used for solving se-
quential resource allocation problems that require long term
planning. In an RMAB instance the decision choices/al-
ternatives are represented by Markov Decision Processes
(MDPs) which are in turn characterized by their transition
dynamics. One major challenge in using RMABs in the real-
world is the problem of unknown transition dynamics. Sev-
eral previous works such as (Liu and Zhao 2010b; Qian et al.
2016; Mate, Perrault, and Tambe 2021) assume that transi-
tion dynamics are already known beforehand, making them
unsuitable for real-world deployment.

A common approach is to estimate the transition dynam-
ics by inferring them using background information. How-
ever, the predictive model learnt in such works maximizes
the accuracy of predicting transition dynamics. This can cre-
ate a mismatch between the objective being maximized and
the final decision outcome. Such a mismatch can result in
unintended consequences for the system, as highlighted in
(Boettiger 2022) in the context of fisheries management.

In contrast, decision-focused learning is a line of work
wherein the decision outcomes are directly optimized rather
than following a predict-then-optimize framework. Different
kinds of one-shot (Donti, Amos, and Kolter 2017; Perrault
et al. 2020; Wilder, Dilkina, and Tambe 2019) and sequential
optimization problems (Wang et al. 2021; Futoma, Hughes,
and Doshi-Velez 2020) can be solved end-to-end by blend-
ing the decision outcome into the downstream optimization
problem. In (Wang et al. 2022), a decision focused learning
framework is proposed for RMABs, where transition dy-
namics are learnt by directly optimizing the final decision
outcome using off-policy policy evaluation (OPE). Unfortu-
nately, OPE with limited data is often not very stable and
requires extensive tuning to get desired results (Huang and
Jiang 2020). Moreover such an end-to-end optimization re-
sults in low interpretability of the results. There are several
differences between this line of work and ours. We focus
on real-world deployed system to illustrate that improved
prediction accuracy using standard error metrics may not re-
sult in improved overall decision quality. In addition we fo-
cus on RMABs and provide tailored approaches to evaluate
and explain the performance of the prediction component of
RMABs.

Preliminaries
Restless Multi-Armed Bandits The RMAB framework
is characterized by N independent Markov Decision Pro-
cesses (Puterman 1994), which are referred to as arms. Each
arm is represented by a 4-tuple {S,A, R,P}. S denotes the
state space, which could be a good state ”beneficiary ad-
hering to the program” or bad state ”beneficiary not adher-
ing to the program”. A is the set of possible actions which
we consider to be binary in our case, i.e., an action could
be active, pulling an arm; or passive, not pulling an arm.
R is the reward function R : S × A × S → R. And
P denotes the probability of transitioning to the next state
s′ ∈ S starting from a current state s ∈ S under action



a ∈ A. We denote this probability as P (s, a, s′). The pol-
icy π for an arm is defined as the mapping π : S → A,
i.e., it dictates the action to be taken given the current state.
The objective that we maximize in the RMAB framework
is sum of expected discounted rewards for all arms. For a
single arm having a starting state s0, this reward can be
written as V π

β (s0) = E [
∑∞

t=0 β
tR(st, π(st), st+1|π, s0)].

The next state are drawn from the distribution st+1 ∼
P (st, π(st), st+1) where β ∈ [0, 1) is called the discount
factor and P represents the transition probabilities of that
arm.

Finding the optimal solution for RMAB problems is
known to be PSPACE-hard (Papadimitriou and Tsitsiklis
1994). The Whittle Index policy (Whittle 1988) is a compu-
tationally efficient heuristic for solving RMAB. The idea of
Whittle Index is to provide a subsidy whenever the passive
action is chosen by the planner. The value of the infimum
subsidy such that there is no difference in choosing among
active or passive actions is then defined as the Whittle Index.
Specifically, W (s) = infλ{λ : Qλ(s, a = 0) = Qλ(s, a =
1)} where Q(s, a) is the Q-value or expected discounted fu-
ture reward of taking an action b from state s. The Whittle
index policy operates by selecting k beneficiaries having the
highest Whittle indices in each decision step.

ARMMAN Beneficiaries are enrolled into ARMMAN’s
mMitra program by healthcare workers. These enrollments
are either made at hospitals or through door-to-door surveys.
At registration time, beneficiaries’ socio-demographic infor-
mation such as age, education, income, number of children,
gestational age, etc is noted. Additionally, based on whether
the beneficiaries have already delivered the baby or not, they
are enrolled in the Antenatal Care or Postnatal Care pro-
gram. Then automated voice calls with health information
tailored according to the gestational age of the beneficia-
ries are sent; the duration of call listened to is stored in a
database. Both the listenership data and the demographic in-
formation is stored in an anonymized manner.

The engagement behaviour of every beneficiary is mod-
elled through an MDP. The binary valued actions correspond
to making a service call (denoted by a = 1, active action)
or not making a service call (denoted by a = 0, passive ac-
tion); the action set A = {0, 1}. In the ARMMAN setting,
we define the states of each beneficiary (arm) based on their
recent engagement with the system. Specifically, if a benefi-
ciary listens to at least one automated voice call with more
than 30 seconds in a week, the beneficiary is marked as en-
gaging. Thus, s = 0, corresponds to Non-Engaging (NE)
state and s = 1 corresponds to Engaging (E) state; the set
of states S = {0, 1}. Finally, with 2 states and 2 actions, the
Markov chain for every beneficiary can be represented us-
ing a 2-state Gilbert-Elliot model (Gilbert 1960). The reward
function is chosen to maximize the engagement of beneficia-
ries (i.e., number of engaging beneficiaries) in the long run.
Specifically, the reward function for the nth arm/beneficiary
is simply defined to be, Rn(s) = s for state s ∈ {0, 1}.

Methodology
The key idea that underlies the analysis is to use the tran-
sition data of the beneficiaries observed in the real-world
as the ground truth i.e., as a basis of our analysis. Specifi-
cally, the observational data reflects the true transition prob-
abilities of the arms (beneficiaries) which, ideally-speaking
should have been the basis of our decisions. However, as
described next, the limited amount of observational data
presents itself as a major challenge here.

Computing Missing Observed Transition Probabilities
via Clustering. The observed transitions of each benefi-
ciary i forms an sequence ⟨(s, a, s′)⟩, where (s, a, s′) de-
notes that the beneficiary i transitioned from the state s to
state s′ under action a in a particular week; here s, s′, a ∈
{0, 1}. From the observed transitions we can empirically es-
timate the true transition probabilities of each arm. However,
due to the limited number of active interventions, we do not
have sufficient observed data to estimate all the transition
probabilities for each beneficiary. In particular, the amount
of active transition probabilities are limited because most of
the beneficiaries (more than 80%) do not receive even a sin-
gle service call during the entire study, due to which we can-
not empirically estimate their true active transition proba-
bilities; however, for most beneficiaries, we have sufficient
observational data to estimate the passive transition proba-
bilities.

To compute the missing transition probabilities we (i)
cluster the beneficiaries based on their observed passive
transition probabilities, then (ii) for each resulting cluster,
we pool the observed transitions of all the beneficiaries in
that cluster, this ensures that we have sufficient data to com-
pute active transition probabilities for each cluster. Then,
(iii) the missing active transition probabilities of each benefi-
ciary is assigned to be the active transition probability of the
cluster in which that beneficiary lies. This procedure enables
us to compute the missing observed transition probabilities.

Once the missing observed transition probabilities are in-
ferred using the described method, we analyze the errors in
predicting transition probabilities. However, we show that
the prediction errors are insufficient in explaining the real-
world performance. This motivates us to pursue an alternate,
more decision-focused evaluation approach. The decision-
focused analysis is based on evaluating the errors in comput-
ing the top Whittle indices, which is in line with the Whit-
tle index policy. Towards this, we compare/contrast different
methods of computing the Whittle indices and show that a
definition based on the well-known Spearman’s footrule dis-
tance (Diaconis and Graham 1977) is best suited in this con-
text. Using this, we analyze the performance of the RMAB
system deployed in the context of ARMMAN. To get a
deeper understanding of the performance, we also present
a probabilistic analysis to quantify how well is our RMAB
system performing as compared to a purely random algo-
rithm as per the proposed metric.

Real-World ARMMAN studies
The first real-world study in which RMAB system was de-
ployed in the context of ARMMAN was performed by Mate



et al. in April 2021. This study tracks a cohort of 23000 ben-
eficiaries for 7 weeks. The cohort was divided into three
groups – round robin, RMAB and the current standard of
care (CSOC). In every group, 125 beneficiaries were se-
lected for intervention every week. In the round robin group,
beneficiaries are given service call on a first-come first serve
basis based on their registration date. In the RMAB group,
beneficiaries are chosen for service calls using the Whittle
index policy. The current standard of care group received no
service call. The study demonstrated that the RMAB-based
system resulted in a ∼ 30% reduction in the engagement
drops as compared to CSOC group.

To rigorously check the efficacy of the RMAB model,
several subsequent field tests have been performed. Specif-
ically, we performed two followup studies where different
training datasets are used to learn the mapping function from
beneficiaries’ demographic data to the MDP parameters; the
training dataset in the context of ARMMAN simply com-
prises of (i) the beneficiaries’ socio-demographic features,
and (ii) their observed transition data from a past field study.
In the April 2021 study, a training dataset used to learn
the demographic features to the MDP parameter mapping
was collected in a study performed in May 2020 where an
RMAB system wasn’t used to plan the interventions. The
second study was performed in January 2022 using a cohort
of 44,000 beneficiaries and it went on for 5 weeks wherein
in each week, in each group, 250 beneficiaries were cho-
sen for intervention. The demographic features to transition
probability mapping was learnt using trajectories of bene-
ficiaries’ behaviour observed in the April 2021 Study, i.e.,
the training dataset for January 2022 study was April 2021.
In the third study, which was performed in May 2022, the
data from the January 2022 study was used for training; it
tracked a cohort of 15,000 beneficiaries and the budget of
intervention each week was 175. The RMAB system per-
formed very well in the April 2021 study – resulting in more
than 30% reduction in the engagement drops as compared
to the CSOC baseline. Figure 1 shows the cumulative en-
gagement drops prevented by RMAB system as compared
to the CSOC group adjusted by the number of service calls.
Clearly, a consistent performance of the RMAB system is
not observed across the 3 studies, with April 2021 study per-
forming the best, followed by May 2022 and January 2022
studies wherein the cumulative engagement drops prevented
by RMAB system weren’t significant. Given this, the goal of
the current work is to diagnose and identify the right eval-
uation method through which we can explain the different
performance of the RMAB model across the three studies.

Analyzing Errors in the Prediction Stage
In this section, we provide a comparative analysis of the per-
formance of the RMAB system in the three field tests and
we highlight the key learning from these studies. We begin
by analyzing the errors in predicting transition probabilities.
The main observation we make here is that an overall im-
provement in the prediction accuracy – at least as measured
by standard metrics such as RMSE or MEA – may not re-
sult in a concomitant improvement in the real-world perfor-
mance.

Figure 1: Performance of the RMAB system across the three
studies

Comparing Prediction Errors across Studies The
RMAB-based system in its first phase predicts the MDP
parameters of each arm, i.e., the transition probabilities for
each beneficiary, denoted by Pi(s, a, s

′) for each beneficiary
i and s, a, s′ ∈ {0, 1}. We define the prediction error based
on comparing the predicted transition probabilities and the
observed transition probabilities for each beneficiary. We
use Oi(s, a, s

′) to denote the observed (or true) transition
probability for each beneficiary. Note that, the transition
probabilities corresponding to each beneficiary are related
by the equations Pi(s, a, s

′) = 1 − Pi(s, a, 1 − s′) and
Oi(s, a, s

′) = 1−Oi(s, a, 1− s′) for each s, a, s′ ∈ {1, 0}.
We take this fact into consideration while defining the cumu-
lative error for each beneficiary, the definition of cumulative
error is based on only the four independent transition prob-
abilities Pi(s, a, s) where s, a ∈ {0, 1}.

There are two natural ways of defining the cumulative er-
rors of each beneficiary i: first, as the Root Mean-Square
Error (RMSE) denoted by ERMSE

i and second as the Mean
Absolute Error (MAE) denoted by EMAE

i . Formally,

ERMSE
i =

√√√√1

4

∑
s∈{0,1}

∑
a∈{0,1}

(
Pi(s, a, s)−Oi(s, a, s)

)2

EMAE
i =

1

4

∑
s∈{0,1}

∑
a∈{0,1}

|Pi(s, a, s)−Oi(s, a, s)|

For each beneficiary, we compute the cumulative error
values — ERMSE

i and EMAE
i — as defined above. We then

compare the distribution of cumulative errors, and analyze
the mean and median error values across the three studies
we performed.

Table 1: Cumulative transition probability prediction errors
across studies.

Error statistics Apr 2021 Jan 2022 May 2022
Mean of ERMSE

i 0.382 0.451 0.345
Median of ERMSE

i 0.375 0.461 0.340
Mean of EMAE

i 0.333 0.4 0.3
Median of EMAE

i 0.311 0.394 0.291

In Table 1 the mean and the median of cumulative errors,
ERMSE
i and EMAE

i , are shown for the three field studies;



the mean and median is computed across all the beneficia-
ries. Clearly, we can see that the errors in January 2022 study
are the highest, wrt to both mean and median. In fact, the cu-
mulative errors are in the following order: errors in January
2022 are the highest, followed by April 2021, and the lowest
prediction errors are observed in May 22 study.

Indeed, this is in direct contrast with the real-world per-
formance of RMAB observed in these studies: as previously
illustrated, the performance of RMAB system in May 2022
was much worse as compared to April 2021. Thus, the pre-
diction accuracy, measured by using the standard measures
like RMSE and MAE, are not at all indicative of the real-
world performance of the RMAB system.

Figure 2: The cumulative errors distribution in January 2022
is skewed towards the high-error region, whereas in May
2022 the errors are localized in the low-error region.

To get more insight, in addition to comparing the mean
and median error values, we also analyze the distribution of
error values. The distribution of cumulative RMSE errors is
shown in Figure 2. The error distributions, represented as vi-
olin plots, depicts the error distribution as a density function.
Specifically, error values are shown on the y-axis and the x-
axis shows the error density — the higher the error density
for a particular error value, the higher the width of the violin
plot at the particular error value2.

Clearly, the distribution of errors is more spread apart in
January 2022 – the errors are concentrated in the high-error
regions (error values 0.4 and above). In contrast, the error
distribution for the May 2022 study is localized in the
low-error region and the distribution tapers in the high-error
region (error values 0.5 and above). For the April 2021
study, we can observe two bumps in the error distribution,
first, around the error density 0.6 and second around the
error density 0.4; the bump in the high-error region is
causing the mean and median error values to become higher.
Thus, upon visually comparing the error distribution, we
arrive at the same conclusion: the prediction errors in
January 2022 are the highest, the errors are the lowest in
May 2022 study and in April 2021 the errors lie in between
the other two studies. Again this is in direct contrast with
the performance of the RMAB system in these studies as
depicted in Figure 1 where we see that the performance of
RMAB in May 2022 was worse as compared to April 2021.

2Since distributions are represented by density function, the
area under each distribution is the same

Decision-Focused Evaluation: Analysing
Errors in Computing Whittle Indices

We now present the decision-focused criterion for analyz-
ing the performance of RMABs. The central idea behind
decision-focused evaluation is to analyze the errors in the
final decision quality which in turn is captured by the Whit-
tle indices in our formulation. Indeed, this analysis is much
more aligned with the Whittle index policy for solving
RMABs, as it reveals how inaccurate the RMAB system was
in predicting the top Whittle indices.

At every decision step (i.e., every week for ARMMAN),
the Whittle index policy selects k beneficiaries having the
highest Whittle index (as per their current states). Given this,
it is natural to perform the Whittle index error analysis week-
by-week. Specifically, for a given study and a given week,
we analyze the errors in computing top-k Whittle indices.

To compute the Whittle index errors, we compare the top-
k predicted Whittle indices of beneficiaries to the observed
Whittle indices – the Whittle indices of beneficiaries com-
puted using the observed (true) transition probabilities.

We begin by introducing required notations. For simplic-
ity, we will use the set of first n natural numbers [n] =
{1, 2, . . . , n} to denote the set of all beneficiaries; here n
denotes the total number of beneficiaries. For a given week,
we will use a permutation P = (b1, b2, . . . , bn) of [n] to
denote the ordered sequence of beneficiaries sorted in de-
scending order as per their Whittle indices. Similarly, we
define O = (b′1, b

′
2, . . . , b

′
n) to denote the ordering of bene-

ficiaries as per their observed Whittle indices in descending
order, i.e., b′1 has the highest observed Whittle index in a
given week. Furthermore, the integers {1, 2, 3, . . . , k} will
be used to denote the k beneficiaries having the highest pre-
dicted Whittle indices in a given week, i.e., beneficiary i has
the the ith highest Whittle index in that week.

Quantifying errors in top-k Whittle indices
Errors in top Whittle indices can be defined in multiple
ways and apriori it is not clear which method is the most
appropriate. We next present a comparative analysis of vari-
ous definitions of errors in top-k Whittle indices. We begin
by highlighting the shortcomings of the seemingly-natural
ways of defining the errors in top-k Whittle indices. Based
on this, we select an error definition that doesn’t suffer from
these shortcomings and we use it to analyze the errors in
top-k Whittle indices across the three studies.

1. Absolute and Normalized Whittle Index Errors: De-
note by WIpi and WIoi the predicted and observed Whittle
indices of each beneficiary i having top-k predicted Whittle
index in a given week i.e. i ∈ {1, 2, . . . , k}. Given this, ar-
guably the simplest way of defining errors in top-k Whittle
index is to consider the absolute difference in the predicted
and the observed Whittle index for all top-k beneficiaries,
denoted by Eabs = 1

k

∑k
i=1 |WIpi − WIoi |. However, this

seemingly natural definition of errors has an issue: the error
values cannot be compared between different studies or dif-
ferent algorithms because the predicted & observed Whittle
indices between two studies can have very different magni-



tudes as they depend on the cohort of beneficiary in a study;
see appendix for supporting data. To mitigate this we can
define the normalized error value of each beneficiary i so
that it captures the percentage change between the predicted
Whittle indices and the observed Whittle indices. Formally,

Enorm =
1

k

k∑
i=1

|WIpi −WIoi |
|WIpi |

However, this error definition also suffers from a similar
issue. We observe that the normalization factor in the de-
nominator i.e., the predicted Whittle indices, WIpi , depend
on the cohort of the beneficiaries, and vary a lot in their mag-
nitudes for different studies, making the error values incom-
parable across different studies; the details of this observa-
tion been deferred to the Appendix.

Notably, a high level issue with both the previous two def-
initions is that the error values depends on the magnitude of
the Whittle indices and not on the ordering, while the Whit-
tle index policy takes decisions solely based on the ordering
of Whittle indices. This motivates the use of more sophisti-
cated error definitions that primarily depend on the Whittle
index ordering.
2. Kendall Tau distance for top-k: The Kendall Tau dis-
tance(Diaconis and Graham 1977) is a well-known metric
for quantifying disarray between two permutations. For a
given permutation π, denote by π(i) the rank or the in-
dex of element i ∈ [n] in the permutation π. Let σ and
π be two permutations of the same set of element [n] =
{1, 2, . . . , n}. The Kendall Tau distance between σ and π,
K(σ, π), is defined to be the fraction of discordant pairs
between the two permutations, i.e., K(σ, τ) = 2/n(n −
1)

∑
1≤i<j≤n Ki,j(σ, τ) where Ki,j(σ, τ) = 1 if the ele-

ments i and j are in the same order in both permutations σ
and π and Ki,j(σ, τ) = 0 otherwise. Formally, Ki,j(σ, π) =
(σ(i) > σ(j)∧π(i) < π(j))∨(σ(i) < σ(j)∧π(i) > π(j)).

Note that, the Kendall Tau distance quantifies the disarray
between relative ordering of elements in two permutations.
To suit our context, we can modify it to capture the disar-
ray in the top-k elements of P , we call this metric the top-k
Kendall Tau distance, Ktop−k(σ, τ). Let (s1, s2, . . . , sk) be
the top-k elements in the permutation σ. Given this, the top-
k Kendall Tau distance is defined as

Ktop−k(σ, τ) =
2

n(n− 1)

∑
1≤i<j≤k

Ksi,sj (σ, τ)

where σ and τ are permutations on k elements 3. Based on
this definition, we define the errors in top-k Whittle indices
as Ekt = Ktop−k(P,O). While this error value Ekt can be
compared across different studies and different weeks of a
given study (because it is normalized by n(n − 1)/2 and
the error values do not depend on the magnitude of Whittle
indices), the error definition still has an issue: consider the

3Note that unlike the normalized Kendall Tau distance, the top-
k Kendall Tau distance is not symmetric, i.e., Ktop−k(σ, π) ̸=
Ktop−k(σ, π).

case when the top-k elements of P appear in the same rela-
tive order at the end of the permutation O (i.e., as a suffix);
the error value, Ekt = 0 for this case. However, in this case,
we would want the error to be high since the beneficiaries
predicted to have the top-k Whittle indices actually have the
lowest observed Whittle indices. In other words, this error
definition only captures the relative difference between the
ordering of the top-k elements in the orderings P and O –
ignoring their relative positions – whereas, as highlighted
by the previous example, this is insufficient to semantically
quantify the Whittle index errors.

3. Spearman’s footrule for top-k: We now present a def-
inition of errors in top-k Whittle indices that is a modifi-
cation of the well-known Spearman’s footrule distance (Di-
aconis and Graham 1977) used to quantify the difference
between two permutations. We then show that this defini-
tion does not suffer from the shortcomings of the previ-
ous definition, and finally compare the errors across differ-
ent studies wrt this decision-focused error definition. For-
mally, the Spearman’s distance S(σ, π) between two permu-
tations σ and π of the set [n] = {1, 2, . . . , n} is defined as
S(σ, π) =

∑n
i=1 |σ(i)− π(i)|.

To capture the errors in top-k Whittle indices we mod-
ify the Spearman’s footrule to (i) consider only the top-k
elements in σ and additionally (ii) we add a normalization
factor of n. Without loss of generality, let (s1, , s2 . . . , sk)
be the top-k elements of σ. Then, the Spearman’s footrule
for top-k is defined as

Stop−k(σ, π) =
1

k

k∑
i=1

|σ(si)− π(si)|
n

=
1

k

k∑
i=1

|i− π(si)|
n

(since σ(si) = i)

The normalization factor of n is added to the denomina-
tor because the quantity |σ(i)−π(i)| is bounded by the total
number of elements/beneficiaries n — after normalization
the error values lie in the interval [0, 1] enabling compari-
son of error values across different studies wherein the num-
ber of beneficiaries, n, are different. Based on this defini-
tion, we define the error in top-k Whittle indices as Es =

Stop−k(P,O) = 1
k

∑k
i=1

|i−O(si)|
n where s1, s2, . . . , sk are

the first k elements of P . Additionally, the Whittle index er-
ror for each beneficiary i having rank i as per the predicted
Whittle index will be denoted by Es

i = |i−O(si)|
n . Therefore,

Es =
1

k

k∑
i=1

Es
i where 1 ≤ i ≤ k, Es

i =
|i−O(si)|

n
(1)

This definition quantifies the average shift in the
ranks/indices of the top-k beneficiaries (as per ordering P )
between P and O — intuitively this is the quantity we want
to capture in the error value as the decisions made by RMAB
system as based on top-k Whittle indices. Indeed this error
definition does not depend on the Whittle index magnitudes
and does not suffer from the shortcomings of the previous
definitions.



In the next section, we show that the error values based
on the top-k Spearman’s footrule distance for the three stud-
ies indeed match-up perfectly with the performance of the
RMAB-based system observed in the real-world.

Errors in Computing top-k Whittle indices
As previously described, we use the error definition based
on the top-k Spearman’s footrule, Es = Stop−k(P,O) =
1
k

∑k
i=1

|i−O(i)|
n .

For the three studies we compare the errors in top-200
Whittle indices, i.e., we set k = 200. This choice is based on
the fact that the number of interventions in the April 2021,
January 2022, and May 2022 studies are 125, 250, and 175
respectively. Therefore, the value k = 200 acts as a middle-
ground, enabling fair comparison across studies.

First we will compare the Whittle index error values
across the studies, week-by-week, for the first four weeks
of all the studies. Then, we will analyze the cumulative
errors which combine the weekly error values into a single
per-study error value.

(i) Week-by-week comparison of Whittle index errors:
The mean and median values of the Whittle index errors for
the first four weeks of each study are shown in tables 2, 3
respectively.

Table 2: Week-wise comparison of mean errors in comput-
ing top Whittle indices.

Week of the study Apr 2021 Jan 2022 May 2022
Week 1 0.424 0.505 0.492
Week 2 0.439 0.486 0.495
Week 3 0.435 0.488 0.49
Week 4 0.446 0.502 0.465
Cumulative mean
errors

0.436 0.495 0.486

Table 3: Week-wise comparison of median errors in comput-
ing top Whittle indices.

Week of the study Apr 2021 Jan 2022 May 2022
Week 1 0.376 0.481 0.471
Week 2 0.387 0.468 0.488
Week 3 0.389 0.485 0.477
Week 4 0.396 0.473 0.46
Cumulative me-
dian errors

0.387 0.477 0.473

We can observe that the Whittle index error values are the
highest for the January 2022 study, followed by May 2022
study and they are the lowest for the April 2021 study. This
order of the error values exactly match with the real-world
performance of the RMAB system in these studies (Figure
1) where the performance of RMAB systems was best
in April 2021, followed by May 2022, and January 2022.
Therefore, unlike the prediction accuracy analysis, the errors
in top-k Whittle indices — the decision-focused evaluation

criterion — is able to explain the overall performance of the
RMAB system in the real-world. In principle, this makes
sense because the RMAB system uses top-k Whittle indices
to take intervention decisions, while transition probabilities
are essentially intermediate values that do not directly
influence the decision choices made by RMAB system.

(ii) Comparison of cumulative Whittle index errors: In
addition to comparing the errors week-by-week, we can
combine the error values across all four weeks for each study
to get a per-study error distribution. This distribution of er-
rors is shown in Figure 3. Tables 2 and 3 list the correspond-
ing values of cumulative mean and median errors. Here also
we observe that the errors in April 2021 are lower as com-
pared to the other studies.

Figure 3: The distribution of top-k Whittle index errors is
shown for all three studies.

Probabilistic Analysis: Comparing RMAB
System to a Purely Random Algorithm

To theoretically explain the varying performance of RMAB
across studies we present a comparison between the RMAB
system and a purely random algorithm – an algorithm which
selects k beneficiaries uniformly at random (with replace-
ment) for intervention every week – based on a probabilistic
analysis. The analysis is based on computing the expected
value and variance of the Whittle index error Es (equation 1)
for a purely random algorithm. The resulting error values are
then used as a baseline to compare the Whittle index error
values observed in all the three studies. Thus, this analysis
can be interpreted as answering the question: how well did
the RMAB-based system perform as compared to the purely
random algorithm? Due to space limitation the entire anal-
ysis has been deferred to the Appendix.

Conclusion
First we demonstrated that the prediction accuracy analysis
alone is insufficient and inconclusive in understanding the
performance of RMAB systems — this was demonstrated
using real-world data of an RMAB system deployed in the
context of a maternal health awareness program together
with a NGO. We then proposed a decision-focused evalu-
ation method for RMAB systems and showed that this is a
far more meaningful evalution to establish correlation with
the real-world performance of the RMAB system. Notably,
our work primarily focused on RMAB systems, solved us-
ing the Whittle index approach. We believe that this analysis
will be useful for other deployed applications of RMAB in
other domains as well.
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Shortcoming of the Normalized Whittle Index
Error

The normalized Whittle index error definition is capturing
the percentage errors between the predicted and the ob-
served Whittle indices. Intuitively this should enable com-
parison of error values between the studies. However, in try-
ing to use the normalized error definition for the three AR-
MMAN studies we found an issue: we observed that the top
predicted Whittle indices in some studies are lower than the
other studies. Due to this the errors values come out to be
higher, since the predicted Whittle indices appear in the de-
nominator term. In table 4, we show the range of top-200
Whittle indices for all the three studies. As we can see, the
top-200 Whittle indices in the May 2022 study are much
lower than the other two studies, due to this the normalized
errors in May 2022 come out to be very high, highlighting

a problem in the error definition. Additionally, note that the
varying range of Whittle indices show the behavioral differ-
ences between the cohort of beneficiaries being considered
in different studies, because Whittle indices are dependent
on transition dynamics which in turn encode behavioral in-
formation of beneficiaries.

Table 4: Range of top-200 Whittle indices for all the studies.

Week of the study Apr 2021 Jan 2022 May 2022
Highest Whittle in-
dex

0.865 1.005 0.536

Top 200th Whittle
index

0.836 0.868 0.360

Probabilistic Analysis: Comparing RMAB
System to a Purely Random Algorithm

In the subsequent analysis we compare the expected Whittle
index error value of a purely random policy to the error val-
ues observed in the three real-world studies. Essentially, this
enables us to quantify, how well the RMAB system is per-
forming as compared to a random baseline, thereby offering
us quantitative explanation of the difference in the observed
performance across studies.

Formally, the purely random algorithm can be modeled as
follows: in each week, the algorithm selects a permutation
P uniformly at random from the set of all permutations of
the elements 1, 2, . . . , n. Then, it selects the top-k elements
having the least rank in P for intervention. The following
theorem gives the closed form of the expected Whittle index
errors E[Es] and an upper bound on the standard deviation
of the errors σ(Es) for a purely random algorithm. The proof
of Theorem 1 has been deferred to the next section.
Theorem 1. The expected value of Whittle index errors for
the purely random algorithm is

E[Es] =
1

2
− k

2n
+

k2 − 1

3n2
,

where k is the number of interventions and n is the total
number of beneficiaries. Additionally, the standard deviation
of the error value

σ(Es) ≤ 1

2
√
3k

for k ≤ 200 and n ≥ 3000.

Using Theorem 1 we compare the error values observed
in the three studies with the baseline error values of the
random algorithm. Specifically, we express the cumulative
Whittle index errors of the three studies (shown in table 2)
in terms of E[Es] and σ(Es) of the purely random algorithm
and quantify how much better is the RMAB system perform-
ing. This comparison is shown in table 5.

In April 2021 study, the RMAB-based system performed
significantly better than the purely random algorithm – the
error in April 2021 is about 3 standard deviations below the
expected error of purely random algorithm. In contrast, we



Table 5: Comparing RMAB-based system with purely ran-
dom policy based on error in top-k Whittle indices.

Study E[Es] σ(Es) Cumulative WI error (Es)
April 21 0.495 0.0204 0.436 ≤ E[Es]− 2.892 σ[Es]
Jan 22 0.497 0.0204 0.495 ≤ E[Es]− 0.098 σ[Es]

May 22 0.493 0.0204 0.486 ≤ E[Es]− 0.343 σ[Es]

can see that the performance of RMAB-based system in the
other two studies is just slight better the purely random al-
gorithm. We can also see that May 2022 is slightly better
as compared to January 2022 since in the former the Whit-
tle index errors are 0.343 standard deviation lower than the
expected errors of the random algorithm, whereas for Jan-
uary 2022 this number is 0.098. Notably, the relative perfor-
mance of the RMAB system across studies obtained by the
probabilistic analysis exactly matches with real-world per-
formance of the RMAB system as shown in Figure 1.

Proof of Theorem 1
We begin by proving the following proposition, which will
be used in the proof of Theorem 1.

Proposition 1. For the purely random algorithm, the fol-
lowing two bounds hold
1) The variance of the Whittle index error of beneficiary i,
V ar(Es

i ) ≤ 1/12.
2) The covariance of the errors terms Cov(Es

i , Es
j ) ≤ 0

where beneficiary i < j ≤ 200 and n ≥ 3000.

Proof. 1) We begin by considering the variance of error term
Es
1 .

V ar(Es
1 ) = E[Es

1Es
1 ]− E[Es

1 ] · E[Es
1 ]

=

n∑
i=1

1

n

(i− 1)2

n2
−
( n∑

i=1

1

n

i− 1

n

)2

=
(n− 1)(2n− 1)

6n2
− (n− 1)2

4n2
≤ 1

12
(2)

Using equation 2, we can upper bound var(Es
i for any i as

follows

V ar(Es
i ) = E[(Es

i − E[Es
i ])

2] = E
[( |j − i|

n
− E

[ |j − i|
n

])2]
=

i

n
· E

[( |j − i|
n

− E
[ |j − i|

n

])2∣∣∣j ≤ i
]
+

n− i

n
· E

[( |j − i|
n

− E
[ |j − i|

n

])2∣∣∣j > i
]

≤ i

n
· 1

12
+

n− i

n
· 1

12
=

1

12
(using equation 2)

2) By definition, we can write Cov(Es
i , Es

j ) for beneficiaries
i < j ≤ 200 as

Cov(Es
i , Es

j ) = E[Es
i Es

j ]− E[Es
i ] · E[Es

j ]

=
∑
k ̸=l

|k − i||l − j|
n(n− 1)

−
∑
k

|k − i|
n

·
∑
l

|l − j|
n

=
∑
k ̸=l

( 1

n(n− 1)
− 1

n2

)
|k − i||l − j| −

∑
k

1

n2
|k − i||k − j|

=
1

n2(n− 1)

∑
k ̸=l

|k − i||l − j| − 1

n2

∑
k

|k − i||k − j|

(3)

We can upper bound the above expression by replacing∑
k ̸=l |k− i||l− j| with

∑
k ̸=l |k− i||l− j| ≤

∑
k ̸=l k · l ≤

(n(n − 1)/2)2. Furthermore, using the fact that i < j ≤
200, we get that

∑
k |k − i||k − j| ≥

∑n−200
k=1 k2 =

(n−200)(n−199)(2n−399)
6 . Combining these observations with

equation 3, we get

Cov(Es
i , Es

j ) ≤
1

n2(n− 1)

n2(n− 1)2

22
−

1

n2

(n− 200)(n− 199)(2n− 399)

6

≤ 1

12n2(n− 1)
×(

3n2(n− 1)2 − 2(n− 1)(n− 200)(n− 199)(2n− 399)
)

(4)

Note that the polynomial 3n2(n − 1)2 − 2(n − 1)(n −
200)(n − 199)(2n − 399) = −n4 + O(n3). Furthermore,
it can be verified that the real roots of the polynomial are 1
and 2178.45, therefore, if n ≥ 2179, then the the value of
equation is negative. Thus, we have

Cov(Es
i , Es

j ) ≤
1

12n2(n− 1)
×(

3n2(n− 1)2 − 2(n− 1)(n− 200)(n− 199)(2n− 399)
)

≤ 0 (for n ≥ 3000)
This concludes the proof.

Now we restate and prove Theorem 1.
Theorem 1. The expected value of Whittle index errors for
the purely random algorithm is

E[Es] =
1

2
− k

2n
+

k2 − 1

3n2
,

where k is the number of interventions and n is the total
number of beneficiaries. Additionally, the standard deviation
of the error value

σ(Es) ≤ 1

2
√
3k



for k ≤ 200 and n ≥ 3000.

Proof. First we will compute the expected error value and
then we will show an upper bound on the variance of the
error value for the purely random algorithm.

Computing the expected error: To facilitate mathematical
analysis, we view the purely random algorithm as follows:
at each decision step, the algorithm selects a permutations
of the beneficiaries P uniformly at random and selects the k
elements having the least rank for intervention; denote these
k beneficiaries by (1, 2, . . . , k) where beneficiary i has rank
i.

Using linearity of expectation and equation 1, the ex-
pected value of Whittle index error can be written as

E[Es] =
1

k

k∑
i=1

E[Es
i ] (5)

To compute E[Es], we will first compute the value of
E[Es

i ]. Denote by O = (b1, b2, . . . , bn) the sequence of
beneficiaries in descending order of Whittle indices for that
week. We know that the purely random algorithm selects k
beneficiaries uniformly at random. Thus, we can interpret
the algorithm as selecting beneficiary i uniformly at random
for each 1 ≤ i ≤ k; indeed these k selections are not inde-
pendent. Using just this interpretation we can compute the
value of E[Es

i ]. Specifically,

E[Es
i ] = E

[ |i−O(i)|
n

]
(via equation 1)

=

n∑
j=1

1

n
· |i− j|

n
=

i∑
j=1

1

n
· i− j

n
+

n∑
j=i+1

1

n
· j − i

n

=
1

n2

((i

2

)
+

(
n− i+ 1

2

))
(6)

On combining equation 5 with 6 we get

E[Es] =
1

k

k∑
i=1

E[Es
i ] =

1

k

k∑
i=1

1

n2

((i

2

)
+

(
n− i+ 1

2

))
=

1

kn2

( k∑
i=1

(
i

2

)
+

k∑
i=1

(
n− i+ 1

2

))
=

1

kn2

((k + 1

3

)
+

(
n+ 1

3

)
−
(
n− k + 1

3

))
(both sums telescope)

=
1

2
− k

2n
+

k2 − 1

3n2
(simplifying)

Upper bounding the standard deviation: Consider the

variance of error Es.

V ar(Es) = V ar
(1
k

k∑
i=1

Es
i

)
=

1

k2
V ar

( k∑
i=1

Es
i

)
(via equation 1)

=
1

k2

( k∑
i=1

V ar(Es
i ) +

∑
i ̸=j

Cov(Es
i , Es

j )
)

≤ 1

k2

( k∑
i=1

1

12
+ 0

)
≤ 1

12k
(via Proposition 1)

This concludes the proof since V ar(Es) ≤ 1/12k and
hence the standard deviation σ(Es) ≤ 1/2

√
3k.


