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Abstract

The increasing frequency and severity of water-related disas-
ters such as floods, tornadoes, hurricanes, and tsunamis in low-
and middle-income countries exemplify the uneven effects
of global climate change. The vulnerability of high-risk soci-
eties to natural disasters has continued to increase. To develop
an effective and efficient adaptation strategy, local damage
assessments must be timely, exhaustive, and accurate. We pro-
pose a novel deep-learning-based solution that uses pairs of
pre- and post-disaster satellite images to identify water-related
disaster-affected regions. The model extracts features of pre-
and post-disaster images and uses the feature difference with
them to predict damage in the pair. We demonstrate that the
model can successfully identify local destruction using less
granular and less complex ground-truth data than those used
by previous segmentation models. When tested with various
water-related disasters, our detection model reported an accu-
racy of 85.9% in spotting areas with damaged buildings. It also
achieved a reliable performance of 97.5% in the case study
on hurricane Iota. Our deep learning-based damage assess-
ment model can help direct resources to areas most vulnerable
to climate disasters, reducing their impacts while promoting
adaptive capacities for climate-resilient development in the
most vulnerable regions.

Introduction
The widespread impacts of human-induced climate change
have been observed as the frequency and intensity of ex-
treme events, including floods, tornadoes, hurricanes, and
tsunamis, increase (IPCC 2022). Amid the growing climate
risk, the global adaptive capacity to deal with disasters has
not progressed accordingly, although the Sustainable Devel-
opment Goals call for a worldwide response (Field et al.
2012). The lack of timely, comprehensive, and accurate data
tracking damage at a fine-grained geographical level is one of
the main reasons for such an adaptation deficit (Amundsen,
Berglund, and Westskog 2010; Moser and Ekstrom 2010).
For example, damage estimates are available only at the
province level in the Emergency Events Database (EM-DAT),
the largest international disaster database, making it difficult
to pinpoint the worst-hit areas. Moreover, the conventional
damage assessment using field surveys is resource-intensive
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and time-consuming (Cao and Choe 2020), which hinders
comprehensive regional coverage (Bakkensen, Shi, and Zu-
rita 2018) and the rapid deployment of humanitarian assis-
tance (Cao and Choe 2020). The field surveys may also suffer
from cognitive biases such as reference dependence and re-
call errors (Guiteras, Jina, and Mobarak 2015).

Recent research in computer vision has combined high spa-
tial resolution satellite images with machine learning to esti-
mate disaster damage on a pixel level or an incident level (Pot-
nis et al. 2019; Weber and Kané 2020; Wu et al. 2021; Bai
et al. 2020; Gupta and Shah 2021). These approaches use
the XBD dataset created by (Gupta et al. 2019), the largest
disaster damage dataset worldwide, providing pre-and post-
disaster images with pixel-level damage labels. While the
models developed using the dataset have made significant
technical advances, they are fundamentally dependent on
the existence of such fine-grained, complex damage labels
in disaster-affected regions. Given that most high-quality
ground-truth data comes from developed countries, a deep
learning model that combines various forms of damage data
and produces accurate local damage estimates would be help-
ful in actual disaster response efforts.

This paper presents a lightweight damage detection model
based on deep learning and high spatial resolution satellite
images. Our ground-truth data is less granular than the data
employed by existing segmentation models. This feature is
advantageous for developing countries lacking the statistical
capacity and resources to produce quality local damage data.
Evaluating our model on various water-related disasters from
2011 to 2019, our model achieved a performance of 90%
in detecting disasters. Also, the case study on Providencia
Island further demonstrates the generalizability of our model,
as it successfully distinguished local destruction caused by
Hurricane Iota in 2021.

We focused on water-related disasters such as floods,
tornadoes, tsunamis, and hurricanes, among many others.
We chose water-related disasters because their frequency
and severity are increasing in the most vulnerable, low-and
middle-income countries (Hallegatte et al. 2013; Rentschler,
Salhab, and Jafino 2022; Edmonds et al. 2020). Despite the
substantial losses caused by the disasters, a significant pop-
ulation is unable to leave disaster-prone regions (Tellman
et al. 2021) for socioeconomic and political reasons (Lin,
McDermott, and Michaels 2021; Raker 2020; Hunter 2005;



Henkel, Eunjee, and Magontier 2022). This necessitates an
effective post-disaster response; therefore, local damage esti-
mates can be especially helpful for prioritizing relief efforts
and climate-resilient redevelopment.

The high-resolution satellite images have several advan-
tages over other spatial data sets (i.e., Google Street views
and aerial images) used in the related literature (Fujita et al.
2017; Vetrivel et al. 2018). First, satellite imagery guarantees
extensive spatial and temporal coverage. Second, satellite
images do not necessarily require resource-intensive damage
labels for training, unlike other spatial input data used in the
previous literature (Fujita et al. 2017; Vetrivel et al. 2018).
They can combine various forms of damage labels (e.g., pixel-
level labels, point coordinates of damaged properties, and
district-level statistics) corresponding to their size.

The proposed model has several methodological contribu-
tions to environmental damage detection. First, the model
effectively identifies local destruction by employing binary
damage labels corresponding to satellite images’ size. This
approach reduces deep-learning models’ reliance on fine-
grained, complex ground-truth data, making the model more
applicable to many developing countries that cannot afford
such data. Second, to the best of our knowledge, our model
is the first successful water-related disaster damage detec-
tion model. Third, our model is practical because it does not
require extensive ground truth data specific to the damaged
regions and its performance is robust to unseen regions.

Our algorithm can help policymakers by identifying the
ideal location for humanitarian assistance deployment and
minimizing the time lag between the onset of a disaster and
assistance responses. The model provides the predicted la-
bels to help determine some measure of centrality for the
location where the resources should be concentrated. As
this machine learning-based assessment can be implemented
faster and cheaper than conventional on-site inspections, the
development agencies would be able to deploy well-targeted
humanitarian aids with less time and lower cost.

Related Work
Recent works have explored the potential of remote sensing
data to assess societies’ average exposure to disasters (Smith
et al. 2019; Tellman et al. 2021). Addressing the limitations
of conventional sources, another line of studies has combined
remote sensing data with neural networks to measure disaster-
incurred destruction directly. (Fujita et al. 2017; Amit and
Aoki 2017; Duarte et al. 2018) applied deep-learning-based
models to pre- and post-disaster imagery data to classify
regions into damaged or undamaged areas. The proposed
classification models were trained with a large number of
damage labels specific to their input image data. With the
methodological advances in machine learning techniques,
semantic segmentation models built on detailed pixel-level
ground-truth data also emerged (Potnis et al. 2019; Weber
and Kané 2020; Wu et al. 2021; Bai et al. 2020; Gupta and
Shah 2021).

Segmentation-based damage assessment using satellite
imagery is an environmental application of change detec-
tion (Janalipour and Taleai 2017; Abbaszadeh Tehrani et al.

2022). Change detection is the process of identifying differ-
ences in the state of an object or phenomenon by observing
it at different times (Singh 1989). Change detection models
are either unsupervised or supervised. Unsupervised methods
use clustering (Mehrotra et al. 2015; Celik 2009), thresh-
olding (Khanbani, Mohammadzadeh, and Janalipour 2021;
Ghanbari and Akbari 2015), or optimization (Kusetogullari,
Yavariabdi, and Celik 2015) to find intrinsic differences be-
tween images without any prior information. On the other
hand, the supervised methods are more common and can
achieve higher accuracy than the unsupervised methods. How-
ever, they also require a large amount of pixel-level labels for
training (Zhu 2017; Zou et al. 2022). Such types of labeling
data are the most expensive labels in the computer vision
field that are costly and time-consuming to gather.

The recent data revolution in the damage assessment field,
the xBD dataset constructed by (Gupta et al. 2019), signif-
icantly extended the coverage of pixel-level damage labels
worldwide. The objective of the xBD challenge is a partic-
ular semantic segmentation task: first to locate a building’s
footprint and then estimate the damage to each building. It
contains pre- and post-disaster images along with pixel-level
categorization for building damage. This dataset sparked the
development of numerous segmentation-based damage de-
tection models; for example, (Weber and Kané 2020; Wu
et al. 2021) proposed U-Net-based models, and (Bai et al.
2020; Gupta and Shah 2021) used pyramid pooling modules.
Both architectures are commonly used for image segmenta-
tion tasks. While the segmentation models crucially rely on
the pixel-level ground-truth data as they exist in the original
dataset, our grid-level prediction model did not require such
granularity in the labeling data. Thus, we used a simplified
version of the xBD dataset. We aimed to predict damage at
rectangular-shaped grids of size 0.01km2, which can still
incorporate the localized nature of disaster damages, but
at much less computational cost and data constraint. This
lightweight feature can be more helpful for rapid disaster
responses in many countries.

One of the valuable global data sources in this aspect is
provided by UNOSAT, the operational satellite applications
program of UNITAR 1. It provides building damage scales
in 5-levels, ranging from No-Damage to Destroyed, along
with their point locations. Despite their extensive coverage,
especially in developing countries, the models developed for
semantic segmentation tasks cannot utilize them as they do
not provide pixel-level damage information. (Xu et al. 2019),
the state-of-art model, utilized this data to build a binary
classifier for detecting building damage at the grid level. We
applied our disaster events to their model architecture and
compared our model’s performance relative to theirs.

Methods
We present a binary classification model that detects damage
in a region from satellite image data. Our model identifies
the rapid change mainly in building structures to distinguish
the damage in target regions. Model input is a pair of images

1https://www.unitar.org/sustainable-development-goals/united-
nations-satellite-centre-UNOSAT



Figure 1: The overall workflow of the proposed model. Our damage detecting model takes pairs of pre- and post-disaster
satellite images as inputs and classifies them into damaged pairs and undamaged pairs. We pre-trained the encoder with non-
disaster satellite imagery before applying disaster satellite imagery. The pre-trained encoders extract embeddings from pre and
post-disaster images of size 224×224, positioning them in a 256-dimensional space. For the final classification, we used three
embeddings: embpre, embpost, embd, where embd is a subtraction of the first two. The fully connected layer takes them as input
and predicts the binary label of each pair. The resulting binary label is assigned for each grid with a size of 0.093km2.

taken over the same geographic region before and after a
disaster. Our model aims to determine whether a given re-
gion was substantially damaged due to a disaster. Due to the
fixed temporal resolution of satellites, one great limit of the
satellite-based approach is the difficulty of obtaining images
right before and after a disaster. Such a time gap inevitably
brings simple visual changes over the season and even general
urban developments (e.g., the construction of buildings and
roads). Our model needs to learn damage-specific features
rather than those simple visual changes, to report disaster
damage accurately.

We used transfer learning to train our model effectively,
following the methods of (Jean et al. 2016; Xie et al. 2016).
Transfer learning consists of two steps: pre-training and fine-
tuning. Pre-training helps the model learn general low-level
features of the image with more straightforward tasks on a
large dataset. After the pre-training, the model is fine-tuned to
fit the objective of the target task. We followed this step and
first pre-trained the network with a simple classification task
for one satellite image. Only satellite imagery of non-disaster
situations was used during pre-training, which is much easier
to gather. After the pre-training, we fine-tuned our model
to detect the damage from a pair of satellite images. The
model can learn to determine whether the given region is
destroyed effectively, taking advantage of the learned general
geographical features from the pre-training that are closely
related to losses of properties and construction in the images.

Pre-training for General Feature Learning
Convolutional neural networks (CNN) for various tasks are
often pre-trained with the ImageNet dataset (Deng et al.
2009). ImageNet-1000 is a large image classification dataset
with over 1.2 million images with 1,000 classes. With such a
large dataset, the model can learn mid-level visual features

such as edges and corners and be used as a generic fea-
ture extractor (Oquab et al. 2014). We also started from the
ImageNet-1000 pre-trained ResNet-18 model. The ResNet-
18 network is a convolutional neural network with 18 lay-
ers (He et al. 2016). We wanted our model to get familiar with
the bird’s-eye viewpoint of satellite images before getting
into the main task since it has never seen any satellite images.
This approach is similar to that of (Xie et al. 2016), which
used a chain of transfer learning to train a model for poverty
mapping.

We used a set of satellite image I from arbitrary regions
and classified them into three classes according to their build-
ing density: more than 50%, under 50%, and 0%. We fol-
lowed the method proposed by (Han et al. 2020a), consider-
ing the limited size of the labeled dataset. Human annotators
labeled a total of 1,000 randomly chosen images such that ev-
ery image in I is labeled by five distinct annotators. For each
image IAi , a label vector yAi = [yhighi , ylowi , yzeroi ] (0 ≤
yhighi , ylowi , yzeroi ≤ 1) is defined as the mean value of
five one-hot building density response vectors from an-
notators. With this labeled pair set L = {(IAi , yAi )}1000i=1

and a larger set of unlabeled image set U = {IUj }Mj=1
with M = 145, 921, we pre-train ResNet-18 to conduct a
three-class classification in a semi-supervised manner. Mean
Teacher framework is utilized to penalize predictions of un-
labeled data that are discrepancy between the student and
teacher models (Tarvainen and Valpola 2017).

The pre-trained network is used as an encoder in our
damage classification model, which extracts the embeddings
that contain semantic information about the images as high-
dimensional vectors.



Damage classification
After pre-training the model to understand the general fea-
tures of satellite imagery with large non-disaster images,
we fine-tuned the model to detect damage after a disas-
ter. Figure 1 describes the overall workflow of our model.
The disaster image pair set D = {(Iprei , Iposti ,yi)}Ni=1 in-
cludes pairs with satellite images taken from the same pre-
known damaged region before and after the disaster, and
yi, the binary label which indicates damage to the region.
The structure of our model resembles the Siamese network,
which has two branches with identical structures and parame-
ters (Chicco 2021). In our pseudo-siamese structure, however,
the two identical branches do not share the same parameters,
thereby giving the model greater flexibility (Zagoruyko and
Komodakis 2015). In addition, damage assessment differs
from conventional change detection tasks because the tar-
get of interest in pre- and post-disaster images differs. The
post-disaster encoder should focus on distinct features re-
lated to disasters, such as building wreckages, whereas the
pre-disaster encoder should focus on ordinary buildings. Our
model could effectively learn such distinctive characteristics
using a pseudo-siamese structure with two separate encoders.

The pre-trained ResNet-18 in the previous step was fine-
tuned as image encoders eθpre and eθpost for pre-event and
post-event image sets, respectively, to learn specialized fea-
tures separately. Each encoder reduces the dimensions of
given satellite imagery, transforming it into high-dimensional
embeddings representing the area’s visual features. Then, we
generate an embedding difference vector embdi ∈ Rd and
the final concatenated vector vi for the i-th pair as follows:

embdi = eθpre(I
pre
i )− eθpost(I

post
i ) (1)

vi = Concat(eθpre(I
pre
i ), embdi, eθpost(I

post
i )). (2)

We used the difference of embedding in the final concate-
nated vector to consider the change caused by the disaster in
imagery. By feeding the embedding difference to the classi-
fier, the model can learn the relationship between the features
more effectively.

Finally, a damage classifier is trained to minimize the loss
L defined between yi and predicted value as follows:

L =
1

|D|
∑

Ipre
i ,Ipost

i ,yi∈D

H(yi, ŷi), (3)

where H is a binary cross entropy loss function. The damage
classifier derives the predicted value ŷi = W · vi, where
W ∈ Rd×dim(yi) is a trainable weight matrix of the classifier.

Data
Satellite imagery Dataset
We use the zoom level coordinate system to define satel-
lite images’ size, resolutions, and alignment. The purpose
of using the system is to maintain consistency with other
studies that combine satellite images and machine learning
techniques (Han et al. 2020b; Jean et al. 2016). The system
is a tile-based coordinate system that divides the entire world
into non-overlapping square-shaped images. At z of 0, the en-
tire world map is fitted to a single image tile and an increase

of the zoom level by one results in half-sized image tiles.
Thus, at z of 1, the world map is divided into 2×2 image tiles
and hence has four times the resolution compared to z=0. A
higher zoom level divides the world map into more tiles, and
each tile will cover a smaller geospatial area at a higher reso-
lution. The zoom levels for input images of machine learning
models are selected considering the task and data availability.
In the case of damage detection models, the target area is
small and requires detailed information. Thus, the existing
damage detection models use relatively high spatial resolu-
tion images (z of 16 to 19) compared to the other models,
such as poverty mapping or land classification models. This
paper also employs satellite images at a zoom level of 17
(tile size of 0.093km2, 1.193m/pixel), allowing the model
to consider the wreckage of buildings and roads. The RGB
spectral bands are present in all of the images utilized in
this research. For model pre-training, images of arbitrary re-
gions were employed. We collected 146,921 satellite images
spanning 2017 and 2018 from the ArcGIS World Imagery
Wayback resource2 for pre-training.

Disaster Dataset
The model was trained with the xBD dataset (Gupta et al.
2019), which is the largest building damage assessment
dataset. The dataset includes pre- and post-images of var-
ious natural disasters, along with building annotations and
damage scale labels. Damage labels span five types; four
are related to damage scales of buildings (i.e., no-damage,
minor-damage, major-damage, and destroyed), and one is
non-buildings. The dataset covers 22 natural disaster events
of seven different categories. In this study, we targeted water-
related disasters, including hurricanes, tornadoes, tsunamis,
and floods. By focusing on them, our model can better learn
the characteristics of water-related disasters, which are quite
different from other disasters, like geological events. We
chose water-related disasters, as their occurrences and im-
pacts have been observed to grow among the most vulnerable
countries to climate change.

The satellite imagery in the xBD collection has a zoom
level of 16, each image tile covering 0.373km2. We cropped
each image tile into four half-sized image tiles. The resulting
image tiles cover 0.093km2 each, which fits the zoom level
of our interest, z = 17.

Since our target is classification at an image level, the xBD
dataset with labels at the pixel level cannot be directly applied
to our model. Reducing the complexity of the data also brings
positive effects such as minimizing noises in the original data,
including the mismatch of building boundaries between the
pre- and post-disaster images and the uneven distribution of
damage class labels. We used a simple method to aggregate
the information from each building polygon to derive the
binary disaster label for each image. The image is classified
as damaged if the maximum damage level of buildings in the
image is greater than or equal to major-damaged.

After applying this rule, we acquired 12,241 damaged pairs
and 25,109 undamaged pairs of satellite images. Among the
total of 37,350 images, 11,018 did not include any build-

2https://livingatlas.arcgis.com/wayback/



ings. The number of images, including major-damage, minor-
damage, and destroyed, is 10,209, 10,046, and 6,413, respec-
tively. The number of images with maximum damage levels
of minor-damage, major-damage, and destroyed was 3,923,
5,828, and 6,413, respectively.

Results
Comparison with Baseline models
The xView2 challenge 3 held in 2019 used the xBD dataset
as a benchmark, and many models were proposed for dam-
age assessment. However, our model cannot be compared to
these models because the tasks and evaluation metrics are
different. The xView2 challenge is defined at the building
level, whereas our model detects damage at the grid level.

Before the xBD dataset was created, created a binary clas-
sification model which uses satellite imagery of pre- and
post-disaster to detect the damage level. They built their own
dataset covering only three disasters to train the model. Their
model comes in four different versions: Channel Concate-
nate (CC), Post-disaster Only (PO), Twin-tower Concatenate
(TTC), and Twin-tower Subtract (TTS) (Xu et al. 2019). To
the best of our knowledge, this work is the only research that
has tried to detect the damage at a grid level. Therefore, we
compared their models as a baseline.

The pre- and post-images are concatenated in the CC
model before being fed to the AlexNet (Krizhevsky,
Sutskever, and Hinton 2012). Only post-disaster satellite im-
ages were used as input in the PO model. TTC and TTS
models input both images to AlexNet’s first convolution layer
to extract the activation map at the lower level. TTC employs
the concatenated activation map of two images as an input
for the remaining convolution layers, while TTS uses the
subtraction of the two activation maps. We implemented the
model and trained it with our simplified xBD dataset.

Table 1: Comparison of precision, recall, F1 score and accu-
racy with baselines.

Prec Rec F1 Acc
CC 0.762 0.641 0.696 0.817
PO 0.716 0.621 0.663 0.794

TTC 0.741 0.669 0.703 0.815
TTS 0.759 0.648 0.697 0.816

Ours 0.796 0.767 0.781 0.859

Table 1 shows the baselines’ worst and best performance
compared to our model. The experiments were conducted
using five different train and test splits. The bold and un-
derlined text indicates the best and second-best performance,
respectively. Both twin-tower baseline models, TTC and TTS,
showed better performance than the single-tower ones, CC
and PO. This result indicates that the model can capture dam-
age better when pre- and post-event images are embedded
separately. TTC and TTS showed similar performances, but

3https://xview2.org/

TTC detected the damage slightly better since concatenation
tends to lose less information in training than subtraction.
Compared to all of the four baseline models, the result from
our model showed higher performance in all four evalua-
tion metrics. In particular, the large gap in recall showed
our model’s ability to produce fewer false negatives on the
damaged region. The proposed model utilizes embeddings of
both images with a full encoder, which better preserves the
information of the original image. We also took advantage of
the benefits of TTC and TTS by putting together embeddings
of pre- and post-images and subtracting them.

Ablation Study
To check the role of each component, we conducted an ab-
lation study where we removed each component from the
model and evaluated the model performance. In this manner,
we can check which components contribute the most and
which may be removed.

• w/o embd. To understand the impact of the embedding dif-
ference vector, embd, on model performance, we removed
the embd and used only the two embedding vectors.

• w/o sep. The encoder for pre and post-images is trained
separately in the full model and does not share the param-
eters. We used the identical network for both images to
test whether separating the two networks helps the model
performance.

• w/o embd, sep. We removed embd and shared one net-
work for pre and post-images. This model can measure
how the two components affect each other.

• w/o pre-training. We trained the model from the random
initialized state to understand how the model gets general
information from the building density classification task.

Table 2 compares the performance of each model. The
experiments were conducted using five different train and
test splits. The full model outperformed the others, demon-
strating the value of each component. Interestingly, without-
pretraining model had the best overall performance among
the ablation models, followed by without embd model. While
the without embd model shows relatively high performance,
the without embd, sep showed the poorest performance,
demonstrating the need for independent encoders.

This contradicts the findings of (Weber and Kané 2020),
which claimed that the model performs better when one net-
work is shared for pre and post-disaster images.

Table 2: Precision, recall, F1 score, and accuracy of the abla-
tion models.

Ablation Model Prec Rec F1 Acc
w/o embd 0.788 0.765 0.776 0.855
w/o sep 0.797 0.752 0.774 0.856

w/o embd, sep 0.784 0.761 0.771 0.852
w/o pre-training 0.807 0.755 0.780 0.860

Full model 0.796 0.767 0.781 0.859



Figure 2: The prediction result of our model on Providencia Island, Colombia. (A) shows the input satellite imagery captured
on December 15, 2018, and November 26, 2020. (B) shows the result of our model. The red dot is the point of damaged buildings
in the UNOSAT ground truth data, and the yellow box indicates the grid where our model reports damage. The zoomed grids of
true positive, false positive, and false negative cases are shown in (C), (D), and (E), respectively.

The cause is likely due to the difference in task objective
— classification vs. object identification. The network sees
the doubled training data when two images are shared, which
can help with detailed object detection learning. Our model,
on the other hand, is a classification model that considers the
entire context rather than just a few data points. Separately
focusing on the before and after contexts can help the model
perform better. Also, the without sep model has the second
best precision with the poorest recall among all ablation mod-
els. When the pre- and post-embeddings are extracted using
the same encoder, the model is more likely to report obser-
vations as undamaged more frequently, resulting in higher
precision with poor recall.

Case Study on Hurricane Iota
Having seen the potential for using computer vision tech-
niques to assess disaster damage, we now introduce one case
study of Hurricane Iota, which hit Colombia’s Providencia
Island in November 2020. The xBD dataset does not include
Hurricane Iota. Therefore, it is valuable to test our detection
model for the northern part of the island to demonstrate the
applicability of the model. According to (IFRC 2021), a sub-
stantial proportion of the island’s infrastructure, an estimated
98%, was destroyed, and 95% of its population was affected.
We compared our model’s prediction result to the ground
truth label generated by (UNITAR 2020).

Figure 2 shows the input images and the prediction re-
sults. We utilized Maxar SecureWatch to access pre- and
post-disaster satellite imagery of the target area. The pre-



disaster image was taken on 15 December 2018, and the
post-disaster image was taken on 26 November 2020. The
disaster occurred in November 2020, yet we could only find
a cloud-free pre-disaster image of the region from December
2018, as shown in Figure 2(A). Both images contain RGB
spectral bands, and we processed the images to match the
specifications for the model training dataset described in Sec-
tion 4.1. We cropped the images into tiles that do not overlap,
each covering 0.093km2 (zoom level of 17). The model suc-
cessfully detected damage in the disaster-affected area as
shown in Figure 2(B), which shows ground truth labels (red
dots) and damage prediction (shaded tiles). Even though the
two images have different color compositions, the overlap
between ground truth labels and predictions indicates that
the model successfully distinguished the characteristics of
damaged buildings from other changes (with the 2020 im-
age missing green space). Our model had a 97.5% accuracy
and an F1 score of 0.851, with 43 true positives, six false
positives, and nine false negatives out of 595 grids.

An example pre- and post-image pair of a damaged region
is shown in Figure 2(C). We also find that some regions were
falsely incorrectly labeled as damaged when they were not
affected or vice versa (i.e., a false positive) and that some
damage was overlooked (i.e., a false negative). The left im-
age pair in Figure 2(D) shows a false positive case due to
a modeling error. The majority of the training data comes
from inland images. Hence, a passing ship captured in the
pre-disaster image served as a noise source. Filtering out the
sea using shoreline data could be one way to avoid faulty
detection caused by moving objects. The right image pair in
Figure 2(D) shows another false positive case due to erro-
neous human labels. The two buildings in the image appear to
be damaged, but the ground truth labels were missing in the
region due to a lack of human resources. Our model correctly
identified damage in the area, demonstrating its ability to
recognize damaged structures.

The image pair in Figure 2(E) shows a false negative case
due to limited temporal resolution. The only satellite imagery
available in the area prior to the disaster was from December
15, 2018, nearly two years before the disaster. During the
period the two satellite images were taken, a new building
was being built that was destroyed by the hurricane. Given
that there is no visible building structure in the pre-disaster
image, the model failed to detect damage in the area, resulting
in a false negative case. This limitation in temporal resolution,
however, is likely to be resolved thanks to the increasing
availability of small satellites.

Conclusion
This study demonstrated how computer vision techniques
could be used to develop a data-driven strategy for disaster
response. Our lightweight model could successfully identify
the damaged areas from water-related disasters with only pre-
and post-satellite images and simple damage labels. Since our
model has little data constraint regarding both the input and
the label data, it can help disaster responses in many settings
where the previous deep-learning-based detection models
were not applicable. For example, the development agency

could prioritize their resources based on the sum of our bi-
nary labels within its administrative units, and also locate
precisely where to deploy the tents and shelters within the
units. This timely and accurate damage estimates provided
by our model could help promote the adaptive capacities of
many vulnerable countries.

Experimental results demonstrated that our model outper-
formed existing baselines in detecting water-related damage,
achieving high accuracy of 91.4%. Our model successfully
identified the damaged areas even with sparse damage labels.
The ablation study confirmed that the unique embedding
method applied on pre- and post-disaster images via two
separate encoders was critical to the performance. Moreover,
pre-training our model with non-disaster satellite imagery
before learning disaster-specific features was a critical factor
in our model’s success in damage detection, which is far
more challenging. Lastly, evaluations of our model in a case
study demonstrated its robustness. Specifically, the case study
result suggested that our model is applicable to real-world
responses with high accuracy.

Future work may improve our work in several aspects.
First, integrating other socioeconomic indicators into a model
can help find socioeconomically more vulnerable regions. For
example, if two areas with the same magnitude of destruc-
tion have starkly different socioeconomic vulnerabilities, the
model should indicate more severe damage for the more vul-
nerable area. Another extension of our approach can be made
to identify damage in man-made disasters. Since they typi-
cally target more densely populated civilian buildings relative
to natural disasters, future work could focus on producing
damage estimates at a finer scale. Lastly, future innovations
could work on harmonizing the increasingly diverse satellite
sources and producing robust damage estimates across the
different sources, as in real-world responses, it is most often
infeasible to choose a particular type of satellite imagery for
the damage assessment.
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