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Abstract

Ride-hailing services’ main feature is mediating the assign-
ment and transactions between drivers and passengers. Es-
sentially, they decide on the quality of passengers’ experience
and the drivers’ income distribution. To boost the company’s
profit, these matching platforms try to maximize the utility
for the passengers by optimizing the matching, resulting in
shorter waiting times and better service availability. Often, in
the process of maximizing revenue, drivers’ interests get side-
lined. We focus on two objectives: efficiency (minimizing to-
tal cost of travel by the vehicles) and fairness (minimizing the
maximum traveled distance by any vehicle) for the case when
drivers can service at most two passengers simultaneously.
We theoretically show the relation between the optimal solu-
tions of both objectives and as the problem is computationally
intractable, we propose a heuristic algorithm to achieve an ap-
proximately optimal solution. The experimental analysis for
the proposed algorithm on real-world data shows that a bit of
attention to fairness can bring significantly fair allocation for
drivers while not losing much efficiency.

Introduction
Ride-hailing and food-delivery services such as Uber, Lyft,
Ola, and Foodora have become essential components in
increasing urban transportation’s sustainability. These ser-
vices are quickly changing the urban transportation ecosys-
tem (Hall and Krueger 2018). Due to the flexible working
hours, ride-hailing services are a popular alternative for peo-
ple looking for a side job or a new career.

Ridesharing is a ride-sourcing mode in which a vehicle
can simultaneously service more than one request. We in-
vestigate the ridesharing problem in the following setting:
there are a set of vehicles in a city and a set of requests;
each request has a pick-up location and drop-off location;
between any two locations, there is a weight function rep-
resenting the length or cost of the shortest route between
them. The problem is to assign all requests to the vehicles
such that each vehicle serves at most two requests simulta-
neously while maximizing efficiency (minimizing the sum of
the cost of travel over all the vehicles) and/or while maximiz-
ing fairness (minimizing the maximum traveled distance by
any vehicle). For efficiency, we adopt the ‘minimizing total
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cost’ criterion, defined as the sum of traveled distance by the
vehicles. For fairness, we adopt the ‘maximize the utility of
least advantaged driver’ criterion based on well-recognized
Rawlsian egalitarian justice (Rawls 1971).

Motivation
By traveling in shared mode, the total distance traveled by
the vehicles can be reduced than that in solo mode. Sharing
the ride reduces the number of automobiles needed by trav-
elers, which leads to long-term social and economic bene-
fits such as 1) reductions in greenhouse gas emissions and
energy consumption, 2) congestion mitigation, 3) reduced
parking infrastructure demand, and others. Ridesharing can
save fuel and reduce greenhouse gas emissions not only by
ridesharing users but also by non-users by reducing the traf-
fic congestion (Shaheen et al. 2018). Here are some case
studies showing the environmental benefits of ridesharing
in various cities (Caulfield 2009; Yin et al. 2018; Cai et al.
2019; Yan et al. 2020).

Ride-hailing services’ main feature is mediating the as-
signment and transactions between drivers and passengers.
Essentially, they decide on the quality of passengers’ experi-
ence and the drivers’ income distribution. To boost the com-
pany’s profit, these matching platforms try to maximize the
utility for the passengers by optimizing the matching that
results in shorter waiting time and better service availabil-
ity (Kedmey 2014). The main reason might be that the pas-
sengers contribute more directly to the platform’s revenue.
In the process of maximizing revenue, drivers’ interests get
sidelined (Jia, Xu, and Liu 2017). The solutions may result
in undesirable social outcomes. Some drivers may be as-
signed to undesired or insufficient trips, resulting in a loss
of fairness from the drivers’ perspective (Lesmana, Zhang,
and Bei 2019).

Recent studies on two-sided matching platforms raise
concerns about the exploitation of employees, including un-
fair pay, working conditions and safety (Fairwork 2020).
The distribution of drivers’ income has yet to get much at-
tention in the algorithm design domain. An investigation by
Bokányi and Hannák (2020) shows the effect of algorithm
design decisions on wage inequality in ride-hailing mar-
kets and how small changes in the system parameters can
cause large deviations in the income distributions of iden-
tically performing drivers. Our concern is that the short-



term income differences may result in enforced and long-
term wage gaps. Nonetheless, ensuring fair income distribu-
tion for drivers might also prove beneficial in sustaining the
business in the long run. Otherwise, unsatisfied drivers may
leave or remain inactive on the platform. Therefore, fair in-
come distribution on the drivers’ side should receive more
attention.

The ridesharing platforms make request-to-vehicle as-
signments with a repeated set of vehicles and customers
where the assignment for each individual is often for some
limited duration in the day. Once that duration is over, the
vehicle can be assigned to another available request in the
following duration. In line with the current matching sce-
narios, we are specifically interested in investigating the re-
peated matching between drivers and requests that lead to
a fair distribution of drivers’ income at the end of the day
while maintaining efficiency.

Related work
Ridesharing systems are widely studied in the literature.
Finding an efficient ridesharing allocation is based on the 2-
1 assignment problem reviewed by Goossens et al. (2012).
The 2-1 assignment problem is as follows: given a set W
of m white balls and a set B of 2m black balls; there is
a cost function for every triple combination containing two
balls from B and one ball from W ; the objective is to find a
collection of triple combinations such that the sum of costs
of triple combinations is minimum, while each ball is in pre-
cisely one combination. In terms of the ridesharing problem,
W and B can be considered as the set of vehicles and pas-
sengers’ requests, respectively. Goossens et al. (2012) pro-
vide a 4/3 approximation ratio algorithm for 2-1 matching.
However, the expression for the cost function in (2012) dif-
fers from that in ridesharing settings.

Bei and Zhang (2018) studied the maximizing efficiency
problem in ridesharing and proved that finding the most ef-
ficient 2-1 matching is NP-hard, and proposed a polynomial
time 2.5 approximation ratio algorithm. Luo and Spieksma
(2020) investigated the problem of minimizing total latency
along with efficiency and provided two algorithms with ap-
proximation ratios 2 and 5/3 for efficiency and total latency,
respectively.

The idea of loss in efficiency in achieving a fair solution
is well explored in many resource allocation settings. How-
ever, to the best of our knowledge, the problem needs to be
more explored in the request-to-vehicle assignment domain.
Mainly because the existing literature for other resource al-
location problems can not be easily applied to the rideshar-
ing settings. This is due to additional constraints unique to
the ridesharing problem, such as the constraint of pick-up
distances.

In line with fairness on ride-hailing platforms, Nanda et
al. (2020) examined the rider’s fairness due to drivers’ dis-
criminative cancellations. Xu and Xu (2020) construct a bi-
objective linear program focused on profit and fairness on
the platform and propose two LP-based parameterized on-
line algorithms. Our objectives also differ from the literature
mentioned above and traditional resource allocation settings
as we study the problem of achieving a balance of fairness

and efficiency in 3-dimensional request-to-vehicle matching
where two requests can be serviced by a vehicle simulta-
neously. The addition of one more dimension brings more
challenges.

An exciting and closely related work by Lesmana et al.
(2019) provides a reassignment algorithm to find a balance
between the two objectives while finding one-to-one (2-D)
request-to-vehicle matching. The algorithm in (Lesmana,
Zhang, and Bei 2019) can also be applied to shared ride set-
tings by assigning one passenger in each repetition of the al-
gorithm. Repeating the algorithm provides a greedy solution
by looking for the best solution in each repetition. We are
designing an algorithm that finds a match for the combined
input of two repeats for the algorithm in (Lesmana, Zhang,
and Bei 2019). This allows the solution set concerning the
capacity of the vehicles and opens up the opportunity to find
a better solution. Along with the importance of finding the
optimal solution for ridesharing, we also intend to look for
the algorithmic question of finding the balanced solution for
multiple objectives in 3-D matching.

Our contributions
In summary, this paper focuses on following research ques-
tions:

1. How the efficient and fair solutions for 2-1 matching, in
ridesharing, are related?

2. How can we get a balance between efficiency and fair-
ness in ridesharing?

3. What is the price, in terms of efficiency, for fair distribu-
tion of work and income among drivers?

To answer these questions, this paper contains the following:

1. We provide theoretical analysis for bound on the ‘loss
in efficiency’ while achieving a fair solution, in terms of
fairness (Theorems 1 and 2).

2. We propose a two-phase algorithm that account for
the natural tension between these two objectives (Algo-
rithm 1).

3. We experiment on a real world dataset and attempt to
answer the question 3 and analyse the performance of
the proposed algorithm (Figure 4).

Model and problem formulation
Consider the city as a weighted connected graph, GC =
(V,E,w), where V is the vertex set, L is a finite set of lo-
cations, E is the edge set s.t., E = {(l1, l2)|l1, l2 ∈ L}
and w : E → R+ is the edge weight function. The weight
function w can be any metric satisfying (1) non-negativity
w(lx, ly) ≥ 0, (2) symmetry w(lx, ly) = w(ly, lx). Typi-
cally, w can be considered as the distance function ℓ2, ℓ1, or
distance on a road graph. The weight notation is extended for
the path as well. With slight abuse of notations, the weight
of a path (l1, l2, . . . , lx) is defined as w(l1, l2, . . . , lx) =∑x−1

i=1 w(li, li+1).
Denote the daily working hours of the ridesharing plat-

form as T . The platform accumulates the requests en-
tered during an accumulating time window λ and performs



batch assignment of the accumulated requests to the avail-
able drivers. Let (t1, t2, t3, . . . , ti, ti+1, . . . , t|T |) be the se-
quence of time instants, such that ti+1 − ti = λ. The set
of accumulated requests at ti are represented by Rti =
{r1, r2, r3, . . . , rm}. Each ride rk consists of two elements,
rk = (sk, dk), where, sk and dk denotes the source and des-
tination of the request rk, respectively.

The set of available drivers1 at ti are repre-
sented as Dti = {v1, v2, v3, . . . , vn}. The attributes
of each vehicle vk is represented as a 6-tuple
(CLvk , DTvk ,WDvk , TLvk , RCvk

, CAPvk) where,
CLvk ∈ L is the current location of vk, DTvk ∈ R≥0 is
total distance travelled by vk since the beginning of the
day, WDvk ∈ Z≥0 is the number of tis the driver is been
active on the platform, TLvk ∈ Z≥0 is time left to complete
the ride currently being serviced by vk, RCvk is the total
number of requests serviced by vk since the beginning of
the day, CAPvk ∈ Z>0 is the seating capacity of vk, which
is the maximum number of passengers that can be serviced
simultaneously by vk. In the following part of the paper,
we represent a time instance as t without mentioning the
subscript i unless required.

We study the algorithmic question of allocating at most
two requests to each vehicle. Hence, in this paper, we as-
sume CAPvk = 2, ∀vk ∈ Dt. Let M denotes the set
of all possible 2-to-1 matching for sets Rt and Dt. More
precisely, our task is to find a matching M t ∈ M such
that, M t = {(vk,Rk)|vk ∈ Dt,Rk ⊆ Rt, |Rk| ≤ 2},
where, R1,R2,R3, . . . ,Rn are mutually disjoint subset of
Rt. Each element (vk,Rk) of M t denotes that the vehicle
vk is assigned to a pair of requests Rk = (ri, rj).

We define a function cost : M → R+ s.t., cost(vk,Rk) is
the minimum distance needs to be covered by vk to service
Rk. There can be six possible routes, depending on the order
of the pick-up and drop-off of the passengers in Rk. More
formally,

cost(vk,Rk) =min(w(CLvk , si, di, sj , dj),

w(CLvk , si, sj , di, dj),

w(CLvk , si, sj , dj , di),

w(CLvk , sj , si, dj , di),

w(CLvk , sj , si, di, dj),

w(CLvk , sj , dj , si, di))

If |Rk| = 1 then, cost(vk,Rk) = w(CLvk , si) + w(si, di).
The cost of a matching M is defined as,

cost(M) =
∑
dk∈D

cost(vk,Rk)

Driver’s per day income: The payment scheme to the
driver might differ between service providers and cities.
Sometimes, even the same service provider might rapidly
change the pricing scheme within a city (Diakopoulos 2015).
We omit those calculations and assume that the drivers get a
fixed pre-decided daily wage. As there is some cost of travel

1We use the term ‘driver’ to denote a ‘vehicle.’ And, therefore,
use both terms interchangeably.

between any two locations, such as fuel cost, the daily utility
of a driver depends on the distance traveled on that day. In
other words, the utility of a driver depends on the shortest
distance covered by the vehicle to serve the assigned ride.
The utility is more if the cost of the ride is less. Concerning
a matching M , the utility of a driver vk is defined as:

udk
(M) = −κ cost(vk,M(k))

where κ is a proportionality constant that depends on the
parameters, such as the fuel cost.

As most of the definitions and results are same for each
interval t ∈ T , we write the notations without using the su-
perscript t in the following part of the paper. We also rep-
resent the matching M among the rides and vehicles as a 3
dimensional matrix A := [ai,j,k]∀(i,j)∈R×R,∀k∈D such that,
ai,j,k = 1 if M(vk) = Rk and Rk = (ri, rj), otherwise,
ai,j,k = 0.

Desired properties
We focus on multiple objectives defined as follows.

DEFINITION 1 (Maximum matching). Given (R,D), a
matching M ∈ M is maximum matching if,

M = max
∑
k∈D

∑
(i,j)∈R×R

ai,j,k

In other words, given (R,D), a maximum matching
M consists of a maximum number of 2-to-1 assignments
among R and D. This objective ensures that we assign a
maximum number of requests to the drivers, which reduces
the overall waiting time of the passengers.

DEFINITION 2 (Efficient matching). Given (R,D), a
matching M ∈ M is efficient matching if there does not
exists a matching M ′ ̸= M such that,∑

vk∈D
cost(vk,M

′(k)) <
∑
vk∈D

cost(vk,M(k))

We desire to reduce the total traveled distance by vehi-
cles that reduce the total emission of greenhouse gases and
overall traffic congestion. Our objective is to get an efficient
matching and hence to find an M ∈ M that has a minimum
cost.

Based on the difference principle in the seminal work on
the theory of justice by John Rawls in (Rawls 1971), we
defined the unfairness (UF) of a matching M as,

UF (M) = max
vk∈D

cost(vk,M(k))

DEFINITION 3 (Fair matching). Given (R,D), a matching
M ∈ M is a fair if there does not exist a matching M ′ ̸= M
such that,

max
vk∈D

cost(vk,M
′(k)) < max

vk∈D
cost(vk,M(k))

We aim to maximize fairness and hence to find an M that
minimizes the distance traveled by the driver who has trav-
eled the most. In other words, we aim to maximize the utility
of the least advantaged agent.



Aiming for the fairness notion defined above may pro-
vide an unfair advantage to drivers with less active duration.
The objective to increase fairness will imply allocating the
least costed requests to the driver who traveled the most ir-
respective of their operational hours. To handle this issue,
we also follow a fairness notion called ‘proportional equal-
ity’ (Sühr et al. 2019), which relies on the idea that, over
time, the drivers should receive benefits proportional to the
duration they remain active on the platform.
DEFINITION 4 (Proportionally equal matching). Given
(R,D), a matching M∗ ∈ M is called a proportionally
equal if there does not exist a matching M ′ ̸= M ,

max
vk∈D

DTvk(M
′)

WDvk(M
′)

< max
vk∈D

DTvk(M
∗)

WDvk(M
∗)

where, DTvk(M) and WDvk(M) are the distance travelled
by and working duration of vk, after the implementation of
M .

We aim to maximize proportional equality and find an M
that minimizes the maximum distance traveled by any driver
per unit of working duration.

We summarize our objectives as follows:
DEFINITION 5 (OBJ1: Efficient Maximum Matching).
Given an instance (R,D), find a maximum matching, s.t.,∑

vk∈D cost(vk,M(k)) is minimum. Mathematically,

argmin
M∈M

∑
vk∈D

cost(vk,M(k))

s.t.
∑

rj∈R,vk∈D
ai,j,k ≤ 1, ∀ri ∈ R

∑
ri∈R,vk∈D

ai,j,k ≤ 1, ∀rj ∈ R

∑
(ri,rj)∈R×R

ai,j,k ≤ 1, ∀vk ∈ D

ai,j,k ∈ {0, 1} ∀ri, rj ∈ R,∀vk ∈ D

DEFINITION 6 (OBJ2: Fair Maximum Matching). Given
an instance (R,D), find the fair maximum matching, s.t.,
maxvk∈D DTvk is minimum. Mathematically,

argmin
M∈M

max
vk∈D

DTvk

such that the sets of feasibility constraints defined in Defini-
tion 5 satisfy.

Relation between efficient and fair solutions
Any feasible solution of OBJ1 is also a feasible solution of
OBJ2 and vice versa. However, they may not have common
optimal solutions, as shown in the Example 1.
EXAMPLE 1. Consider two vehicles D = {v1, v2} with
CAPv1 = CAPv2 = 2, WDv1 = WDv2 and located
at A ∈ L. There are four requests R = {r1, r2, r3, r4}
such that, ∀ri ∈ R, si = A. And the destination lo-
cations for r1, r2, r3, and r4 are B,C,D and E, respec-
tively (Figure 1). The edges and weights in fig. 1 show the
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Figure 1: Example 1 with D = 2 and R = 4.
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Figure 2: Example 2 with D = 2 and R = 4.

connectivity and the cost of travel between any two loca-
tions. One of the optimal solution for OBJ1 is M∗

1 =
{(v1, (r1, r2)), (v2, (r3, r4))} with OBJ1(M∗

1 ) = 3.5ϵ +
8.5ϵ = 12ϵ. However, M∗

1 is not an optimal solution
for OBJ2 as OBJ2(M∗

1 ) = 8.5ϵ and there exist an-
other matching M∗

2 = {(v1, (r1, r3)), (v2, (r2, r4))} with
increased fairness; OBJ2(M∗

2 ) = 6.5ϵ, but also increased
cost, OBJ1(M∗

2 ) = 13ϵ.

Represent the loss in efficiency while achieving a fair so-
lution as ∆. Mathematically,

∆ = OBJ1(M∗
2 )−OBJ1(M∗

1 )

Similarly, define the loss in fairness while achieving an
efficient solution as Γ. Mathematically,

Γ = OBJ2(M∗
1 )−OBJ2(M∗

2 )

The lower bound for ∆ and Γ is 0, as there exist problem
instance where the efficient matching is also fair, as shown
in the example below.

EXAMPLE 2. Consider the example 1 with a change in the
edge weight as shown in Figure 2. One of the optimal solu-
tion for OBJ1 is M∗

1 = {(v1, (r1, r3)), (v2, (r2, r4))} with
OBJ1(M∗

1 ) = 11ϵ. Nevertheless, M∗
1 is an optimal solu-

tion for OBJ2 as well with OBJ2(M∗
1 ) = 5.5ϵ and there

exist no another maximum matching M
′

2 with increased fair-
ness.



Edge weights

Figure 3: Problem instance for Theorem 2

THEOREM 1. If M∗
1 and M∗

2 are optimal solu-
tions for OBJ1 and OBJ2, respectively, then
∆ = O(nOBJ2(M∗

1 )).

Proof. Suppose the above statement is not true and there
exist a scenario where (OBJ1(M∗

2 ) − OBJ1(M∗
1 )) >

n(OBJ2(M∗
1 ). As cost(.) is always non-negative, we

get, OBJ1(M∗
2 ) > n(OBJ2(M∗

1 ). This implies,
nOBJ2(M∗

2 ) > n(OBJ2(M∗
1 ), which leads to contradic-

tion that M∗
2 is an optimal solution for OBJ2.

Next, we show a lower upper bound for ∆ in terms of
OBJ2(M∗

1 ).
THEOREM 2. If M∗

1 and M∗
2 are optimal solutions for

OBJ1 and OBJ2, respectively, then there exists an input
instance, where ∆ = o((n− 1)OBJ2(M∗

1 )).

Proof. We construct an input instance to prove the above
statement. Consider n drivers d1, d2, . . . , dn located at X ,
and 2n ride requests each with source location X . The
destination location of half of the rides, say r1 to rn
are A1, A2, . . . , An and for rides rn+1, rn+2, . . . , r2n are
B1, B2, . . . , Bn, respectively. All these locations and their
cost of travel between them is shown in Figure 3. The nota-
tions in edge weights are as follows: x, ϵ, δ > 0, ϵ < δ and
ϵ + δ < x. The most expensive edge is (X,A1) with cost
x− ϵ.

One of the efficient maximum matching M∗
1 is

{(d1, (r1, rn+1)), (di, (ri, rn+i)) for 1 < i ≤ n} with
OBJ1(M∗

1 ) = x + 2ϵ(n − 1). The matching M∗
1 has

OBJ2(M∗
1 ) = x. However, the efficiency is decreased in

M∗
2 as the OBJ1(M∗

2 ) = n(x− δ + ϵ) + 2ϵ.
The difference in the efficiency in the two matching ∆

= n(x− δ + ϵ) + 2ϵ− (x+ 2ϵ(n− 1))

= (n− 1)x+ n(ϵ− 2ϵ) + 2ϵ− δ

with ϵ, δ ≪ x,
= o(n− 1)x

Remarks: The proof for Theorem 2 is valid when we con-
sider proportional equality as OBJ2 instead of fairness. We
can fix WDvk in Example 2 as equal for all vk ∈ Dt, and
the same example will prove the statement of Theorem 2 for
proportional equality as OBJ2.

Algorithm 1: Efficient-match Fair-assign
Algorithm (EMFAA)

1: Procedure (L,Rt,Dt, t)
2: Construct a weighted graph G1 :=

(Rt, E1,W 1) such that, E1 :=
{(ri, rj)| ∀ri, rj ∈ Rt, ri ̸= rj}, W 1(ri, rj) :=
min

(
cost(si, (ri, rj)), cost(sj , (ri, rj))

)
∀(ri, rj) ∈

E1.
3: Find minimum weight matching M1 for G1.
4: SM1 := Sorted request pairs in M1 in increasing order

of their cost.
5: SDt := Sorted Dt in decreasing order of DTvk .
6: for i from 1 to min(|SM1|, |SDt|) do

M2(SDt(i)) = SM1(i) // Find a matching M2 by
assigning the least weighted (ri, rj) to the vehicle vk
with the maximum value of DTvk , and so on. //

7: end for
8: return M2 as the batch assignment for t.

Proposed algorithm
Finding the efficient maximum matching is equivalent to
finding a 3-dimensional perfect matching (3DM), known
to be NP-hard (Garey and Johnson 1990; Bei and Zhang
2018). We believe that finding an optimal solution for OBJ2
is also computationally intractable as the objective is simi-
lar to finding the optimal solution of minimum makespan
scheduling, which is known to be NP-hard (Garey and John-
son 1990), with an additional constraint. The additional con-
straint is over the maximum number of jobs that can be al-
located to a machine, where the processing time of a job on
a machine depends also on the other jobs assigned to that
machine.

We are looking for a computationally inexpensive algo-
rithm that can provide close-to-optimal solutions. There are
two major decisions to be made to achieve a 2-to-1 match-
ing. First, to find the request pairs; second, to assign a driver
to each request pair. To find a balance between the two ob-
jectives, we propose a two-phase heuristic algorithm (Al-
gorithm 1) that focuses on the objectives individually. The
main idea is to prioritize one of the objectives while mak-
ing the first decision and another objective while making the
second decision. The algorithm resembles the bi-level opti-
mization where we partially optimize OBJ1 and OBJ2 at
the lower and upper levels, respectively.

Algorithm 1 finds the assignment at the end of each accu-
mulated window. At each time interval t, the algorithm goes
in two phases: in the first phase, the algorithm matches the
requests based on their combined travel cost, and in the sec-
ond phase, the algorithm assigns the matched request pairs
with the available drivers. The aim is to focus on efficiency
in the first phase while matching the requests and fairness in
the second phase while assigning the matched pairs to the
drivers.

Remarks: (a) A minimum matching in a weighted graph
of m vertices can be computed in time O(m3) (Gabow
1990). Therefore, the Algorithm 1 runs in O(m3) time.
(b) The step (6) results in the maximum possible assign-



ments by considering the number of available drivers and
the number of request pairs found in step (3). Hence, the
Algorithm 1 finds a maximum matching from the set of
feasible matching.

More versions of EMFAA
We can change steps (5) and (6) of Algorithm 1 depend-
ing on various factors in the settings, such as the definition
of fair allocation for drivers. Some examples are discussed
here.
1. According to the definition of fairness and payment

scheme:
▷ For considering proportional equality instead of fair-

ness as OBJ2, the sorting in step 5 is done based on
DTvk

WDvk
instead of DTvk .

▷ For the case when drivers get a fixed payment per re-
quest serviced by them. Then, the measure of propor-
tional inequality for fixed payment (PEF ) is

PEF t(M) = max
vk∈D

RCvk

WDvk

where, RCvk is the total number of requests serviced
by vk since the beginning of the day. In that case,
OBJ2 is to minimize PEF , therefore, sorting in step
(5) is done based on the RCvk

WDvk
of drivers and step (6)

changes accordingly.

2. Flexible assignment: In algorithm 1, we assume that all
the vehicles available in Dt are empty and can be as-
signed to two rides. However, in reality, a vehicle vk
might be in the state where it is currently servicing only
one passenger and has space for one more passenger.
Hence, assigning a new passenger does not violate the
capacity constraint. In such a case, we propose the fol-
lowing.
Before constructing the weighted graph G1, add the ride
ri, which is currently being serviced by vk to set Rt with
source si as the current location of the vehicle, and des-
tination di as the original destination of ri. Do not in-
clude vk in Dt for steps (5-6). Assign vk to the ride rj
matched with ri in M1, i.e., M2(vk) = {ri, rj}, where
M1(ri) = rj .

Experimental analysis
We experiment on a real-world dataset to analyze the behav-
ior of Algorithm 1 concerning fairness and efficiency.

Framework
The dataset details and values of the parameters used for the
experiments are as follows.

Trip Dataset: We use the publicly available dataset of
taxi trips (solo rides) in Chicago city (Chicago Data Portal
2022). The dataset contains all the taxi trips, starting Jan-
uary 2013, reported to the City of Chicago. We extracted the
dataset during the busy three hours in the morning (8 : 00-
10 : 00) on ‘April 4, 2022’ (Monday). The dataset includes

a unique identifier for each taxi and some essential attributes
about trips, e.g., the source and destination locations and
time of the trip. We choose this day arbitrarily, and we
strongly believe the results will have a similar pattern if we
experiment on another part of the dataset.

Accumulating window (λ): In the dataset, the trip start
and end time are rounded to the nearest 15-minute interval to
preserve the passengers’ privacy. We consider λ=15 minutes
and divide all the trips into 15-minute intervals depending
on their start time. We randomly pick 20 requests in each
15-minute interval.

Drivers: The dataset does not contain information for the
location of vehicles before the trips are assigned to them.
Therefore, the data points for the drivers are generated syn-
thetically. We fix the number of drivers m for a day as 30.
Randomly chosen 30 locations on the Chicago city map are
fixed as the drivers’ initial or current locations CLvk . Ini-
tially, the attributes DTvk ,WDvk , TLvk , RCvk are equal to
0, and the capacity CAPvk = 2 for every vk ∈ D.

Procedure in every iteration
We assume each vehicles’ average speed is 27 miles/hr.
For each iteration, we pick a 15-minutes chunk of trips to be
allocated as Rt. Each driver vk ∈ D0 is checked whether
vk is already busy in providing service to the ride assigned
to it in previous iterations or the driver is free. This we
do by comparing the time passed since the ride was given
to vk in previous iterations, assuming the speed of vk is
27 miles/hr. If vk ∈ D0 has already completed the ser-
vice or is free, it is added to Dt. Hence, we get the set Dt

containing all the available drivers for the coming period.
With input (Rt,Dt), we apply Algorithm 1. At the end of

the ride, CLvk of vk is assumed to be the location where the
allocated ride ends. Similarly, all the other parameters in the
tuple representing vk are updated. Due to fewer vehicles,
some requests from Rt may not be allocated in the period
t. In that case, we count those remaining requests and add
them to the next chunk considered in the next iteration. The
procedure in every iteration is summarized in Algorithm 2.

Algorithm 2: Procedure in each iteration

1: Pick a 15-minutes chunk of trips to be allocated as Rt.
2: Add the unmatched rides from Rt−1 to Rt.
3: for ∀vk ∈ D0 do
4: Check whether vk is busy in providing service.
5: if already completed the service then
6: Add vk to Dt.
7: end if
8: end for
9: Apply Algorithm 1 for (Rt,Dt).

10: Find the unmatched rides in Rt.
11: ∀vk ∈ D0, update elements in

(CLvk , DTvk ,WDvk , TLvk
, RCvk , CAPvk).

State-of-the-art algorithm for comparison: We also
apply the procedure on a state-of-the-art algorithm (we call,
BZ) proposed by Bei and Zhang (2018) for OBJ1. BZ guar-



antees to achieve a 2.5 approximate solution for OBJ1 in
polynomial time.

Comparison metrics
We compare the two algorithms, BZ and Algorithm 1, based
on the following metrics:
1. Price of fairness: Finding the efficient 3-D assignment

is a computationally expensive problem, and therefore,
comparing the efficiency generated by the algorithm with
the optimally efficient solution is intractable. As OBJ1
is a minimization problem, for the analysis, we consider
the lower bound (LB) for OBJ1 in each iteration. The
LB is computed as the sum of the cost of minimum
weighted matching among the nodes Rt and that of min-
imum bipartite matching between Rt and Dt. We com-
pare the efficiency by Algorithm 1 with the lower bound
of efficiency in that iteration.

2. Increase in fairness: We compare the metrics fairness
and proportional fairness after every iteration, corre-
sponding to the allocations by Algorithm 1 and BZ.

Results
Figure 4a shows the ‘loss in efficiency’ in the matching
given by EMFAA in each iteration. The approximation fac-
tor concerning the LB is at most 1.75. This hints that the
matching provided by EMFAA doesn’t lose much efficiency.
Notice that BZ provides a 2.5 approximation factor for effi-
ciency. Figure 4b shows the gain in fairness for the matching
by EMFAA in comparison with that by BZ. The plot shows
that fairness increases with up to 70% (for interval 9 : 30).
In summary, Figure 4 shows that a little attention to fairness
can bring significantly fair allocation for drivers while not
losing much efficiency.

Conclusion
From the theoretical analysis in the paper, we conclude that
simultaneously achieving both the objectives, namely, effi-
ciency and fairness, is infeasible or challenging. However,
from the experimental analysis, a bit of consideration to-
wards fairness while aiming for efficiency can result in a
fine balance between the two objectives. For both objec-
tives, theoretical analysis of the approximation factor given
by EMFAA is an exciting direction to follow.

The experiments done in this paper are on a small part of
the available data set. In the future, we plan to run experi-
ments on various two-phase algorithms, some of which are
already mentioned in this paper, on a more extensive data
set. We expect the experiment results for a more extensive
data set will have a similar pattern. For the future avenue,
some interesting directions are to study the balance of the
two objectives problem for other fairness metrics with ride-
sharing efficiency and heterogeneous capacity of the vehi-
cles.
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