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Abstract
It is becoming increasingly popular for organizations to in-
vest in carbon credits programs involving planting trees to
offset their carbon footprint. However, in order to correctly
measure carbon sequestration, it is important to know which
tree species exist in a given region. This identification task
requires very well-trained local botanists who are not only
an expensive resource, but also not accurate enough. AI-
assisted tree classification has become an promising way to
solve the problem, but low data quality has been the limit-
ing factor. Our work focuses on determining how to build a
high quality dataset of tree parts that can lead to the most ac-
curate tree classification. We contribute BiomeAzuero2022,
a publicly available image dataset of 9071 tree images cap-
tured in Azuero, Panama with ground truth species labels,
organized by different parts of trees. We further provide a
methodology for estimating feature importance via machine
learning and interpretability methods with the goal of gath-
ering higher-quality image data through a case study on
BiomeAzuero2022.

Introduction
There is enormous potential for tree restoration efforts in
forests to help mitigate climate change (Bastin 2019). In or-
der to successfully implement tree planting initiatives, we
need accurate metrics for measuring tree carbon sequestra-
tion, which is done with some baseline allometric models.
These models require wood density as a parameter, which
differs for every tree species, so in order to properly measure
tree carbon sequestration we need a strong understanding of
which species exist in any given region ((Chave J 2014)).

Our work is based out of the tropical dry forest in Azuero,
Panama, which is one of the most biodiverse regions in the
world. With this many species, identifying and classifying
trees requires highly-trained local botanists, and even for
them the task takes a lot of time and effort and is error-prone.
In contrast, machine learning models have the ability to find
subtle differences between thousands of inputs and classify
images correctly (O’Shea 2015). AI-assisted tree classifica-
tion can greatly reduce the work field ecologists need to do
to identify trees on the ground.
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The first step to trying to build up good classification mod-
els is to create a dataset of labeled tree images. The process
of photographing different features of a tree requires sub-
stantial manual effort and time (which we found through two
months of photography field work in the region). This led us
to focus our efforts on understanding what is needed from
a dataset of trees in order to produce the best classification.
Understanding which part of a tree and what kind of photos
are most necessary for classification can greatly reduce the
labor needed to photograph each tree.

We also choose to focus on strengthening our dataset
as a result of recent critiques of training machine learning
models that are based on low quality data. Data issues can
cause significantly negative downstream effects in AI mod-
els (Sambasivan et al. 2021).

Through this work, we contribute a public dataset of 10
tree species in Azuero, Panama separated into different tree
parts. We also analyze the strengths and weaknesses of our
current Panama dataset using (1) saliency and class activa-
tion maps to understand the qualities needed in a good im-
age and (2) accuracy in existing classification models when
using different tree parts as inputs. This analysis will inform
and improve future field photography in these forest regions.

Related Work
Tree Species Image Datasets and Classification
Models
Most existing approaches for tree species classification uti-
lize the leaf pictures as the major input source as leave often
are the most accessible and informative feature of trees. (Lee
et al. 2015) was one of the first to propose the state-of-the-art
machine learning approach for plant species classification on
44 species from the Royal Botanic Gardens in England. Al-
ternatively, using the LeafSnap dataset, (Barré et al. 2017)
developed the “LeafSnap” system that extracts features rep-
resenting the curvature of the leaf’s contour over multiple
scales and achieves acceptable accuracy when identifying
the species from LeafSnap dataset (Kumar et al. 2012) ,
which consists of 184 tree species in the Northeastern United
States. However leaves are far less accurate when it comes
to identifying trees.

To expand the variety of plant images from merely leaves,



the citizen science website iNaturalist published an state-of-
the-art dataset iNat2017 for image classification and detec-
tion for “in the wild data” featuring large numbers of imbal-
anced, fine-grained, categories (Van Horn et al. 2018). iNat-
uralist also embeds their own species identification model
into their official website, which is trained on all species
(animals, insects, plants, etc.) from around the world, while
we would like to focus specifically on tree classification in
Azuero. What’s more, the model proposed by iNaturalist is
unfortunately not available for commercial applications and
to not perform well for all parts of a tree (only achieving
around 0.1 accuracy using tree profile or leaf pictures from
BiomeAzuero2022).

Extensive studies have focused on utilizing Light Detec-
tion and Ranging (LiDAR) data (Brandtberg 2007) (Jones,
Coops, and Sharma 2010) (Zhou et al. 2017) for tree species
classification tasks in recent years, which allows for the ac-
quisition of three-dimensional point clouds of scanned ar-
eas. While LiDAR-based methods sound promising in large
scale applications, they usually suffer from the issues of
data sparsity and the difficulty in tree separation. Alternative
remote-sensing methods, such as those based on multispec-
tral/hyperspectral data (Clark and Roberts 2012) (Ghosh
et al. 2014) and Synthetic Aperture Radar (SAR) (Schmitt,
Shahzad, and Zhu 2015) (Ranson et al. 2001) data, have sim-
ilar limitations in individual tree separation and information
de-noising. By contrast, we are photographing high quality
tree images on the ground which eliminates the tree separa-
tion problem and maximize the data quality.

Interpretable Image Classification
In order for machine learning models to move towards their
integration into the real world for greater impact, they have
to be transparent and produce explainable results. The most
common way to interpret image classification is perhaps
through saliency maps, which highlight the most important
pixels of an image for its classification (Simonyan, Vedaldi,
and Zisserman 2013). Saliency is usually measured by com-
puting the gradient of the activation function for a particu-
lar class with respect to every pixel in an image. Another
promising class of visualization methods is class activation
maps (CAMs), which are generated by calculating the gra-
dients at the last layer in a deep neural network that con-
tains spatial information, instead of the last layer (Zhou et al.
2016).

While a lot of work is done on optimizing the inter-
pretability methods above, the focus is mainly on model
behavior validation; exploratory analysis is possible, but
clearly expensive (Balayn et al. 2021). We propose a pro-
cedure that generates insights from saliency maps and class
activation maps which ultimately sheds light on the data
gathering process, providing guidelines for image capturing
based on where attention is paid by the models.

Dataset
In this section we describe the details of the dataset,
including the data collection process, data features, and
challenges encountered while collecting the dataset, which

future researchers might find helpful when constructing
their own datasets. The dataset is publicly available at
https://www.kaggle.com/datasets/earthshot/azuero-trees-
1024.

Figure 1: Dataset structure of the 10 most common tree
species in Panama

Data collection
BiomeAzuero2022 contains 9071 pictures collected by the
Biome team from Earthshot Labs with the aim of stream-
lining tree inventory work for improved biomass calculation
and verification. Biome collaborated with local Smithsonian
botanist , Jorge Valdes, in the tropical dry forests at Azuero,
Panama for data collection and the detailed tree image col-
lection process is shown in Figure 2. Clear instructions and
guidelines for photo gathering are given to local botanist.
Guidelines include number of pictures to take for each tree,
specification of parts of trees (such as canopy, bark, etc.),
and the direction of certain types of pictures (e.g. the picture
of leaves should be taken horizontally). Figure 3 shows two
examples of the guidelines.

Figure 2: Image collection process

Features
The tree classification dataset contains 10 species of trees
photographed from tropical dry forest at Azuero, Panama.
Up to 10 trees are photographed for each species. For each
species, images are organized into categories, including tree
profile, close-up bark, roots, canopy leaves, sap (optional),
sap with white balance card (optional, only if provided),
leaves bottom (optional), leaves top (optional), fruit/seed
(optional), flower (optional).

Figure 1 shows the dataset structure of the 10 most com-
mon species. Time stamps and the GPS coordinates of each
image are also recorded as part of the image meta data.



Figure 3: Example Guidelines

Model Accuracy F-1 Recall Precision
MobileNet 0.35 0.44 0.35 0.65

DenseNet121 0.31 0.39 0.31 0.61
MobileNetV2 0.3 0.37 0.3 0.54

ResNet50 0.09 0.13 0.09 0.23
EfficientNetB5 0.08 0.08 0.08 0.13

Table 1: Model performance on all Panama collected images
before pre-processing with train/test split 7-3 trees

Challenges
Labor limitations and data inconsistency are the main chal-
lenges. Even though the local botanist expert tried to strictly
follow the guideline, mistakes (with respect to the number of
pictures for each part) are inevitable especially when he has
to take thousands of photos in several days. The collected
dataset may not strictly follow the instructions, which led
to additional efforts in downstream data reorganization and
cleaning. We want to improve the efficiency and correctness
by updating the photo guidelines which focus on important
features tree so that local botanist expert can take less pic-
tures for each tree.

Methods
Model
To run the feature importance analysis, we used the convo-
lutional neural network backbone architecture called Mo-
bileNet after determining that it was the best performing
model architecture (Table 1) for this dataset with 7-3 trees
train/test split.

Macro Features
The first aspect of the dataset we choose to understand is
which tree parts are needed for the most accurate tree classi-
fication. We call these features macro features because they
refer to which images are being used instead of the content
of each image. We look at feature importance in a multi-
image input model and analyze which combination of im-
ages lead to highest accuracy. We expect that this process
will inform which subset of images is most important to be
taken while in the field.

Micro Features
We then study the micro features within each part of trees;
that is, pixels in an image that contribute most to its clas-
sification. Building on the macro feature analysis, we focus
our analysis on bark, branch, canopy, leaf, and profile as the
other parts (fruit, flower, etc.) are harder to find. The work-
flow is as follows. First, all the mis-classified images from
the testing set are collected, and an example is randomly
selected. Then, a correctly classified image most similar to
the previous image from the same part of tree is selected.
After that, saliency maps and class activation maps are gen-
erated for both images and results are compared by a pair
of researchers. We hypothesize that there are patterns with
how images are (mis)classified and that visualizing them
provides a mechanism for informing how images should be
captured. We describe recurring patterns and themes from
our experiments in the next section.

Experiments/Results
Macro Features
We use a modified 3 images input Mobile Net model to clas-
sify 10 tree species. Then we stress-tested the model using
different combinations of tree parts to see which tree parts
are most important for accurate classification. For this we
used an 80-20 train test split. We try to measure how much
accuracy each tree part adds on. Figure 4 shows:

addonp =

∑
{S⊆U |p∈S} aS − aS\{p}

|{S ⊆ U | p ∈ S}|

where p is a tree part, U is all possible tree parts, and a is
the accuracy of the model given some subset of tree parts.
We see that the profile image is the most helpful in terms
of classifying the tree, followed by leaves, and bark is last.
For now, we only analyze combinations of bark, leaves, and
profile, but will run a larger scale analysis of different com-
binations of all the tree features in the future.

Figure 4: The plot shows how much accuracy on average is
added on when each feature is added to the dataset. These re-
sults are based on an 80-20 train test split which tends to report
higher accuracy, so these values are primarily used to compare
features with each other

Micro Features
There seem to be two main types of issues with data that
cause an image to be mis-classified, type (1) too much noise



in the background, and type (2) missing key characteristics
of a component.

Figure 5: Correctly classified (left) and incorrectly classi-
fied (right) leaf images; Multiple leaves in the image add to
noise.

In the first example, when the model predicts the class
correctly, attention is paid entirely to the leaf itself, whereas
in the mis-classified one the model spares attention to the
other leaf in the photo, possibly treating the set of the two
leaves as a single leaf. Similar examples indicate that pho-
tographers should minimize error (1) by capturing only one
leaf in the photo.

Figure 6: Correctly classified (left) and incorrectly classified
(right) branch structure; Noise in the background overshad-
ows tips of leaves.

When it comes to branch structure, the model invariably
focuses on the tip of leaves as a distinguishing feature in cor-
rectly classified examples. However, in the mis-classified ex-
ample shown above, the model fails to capture it because it is
distracted by random noises in the background. Again, pho-
tographers could have reduced error (1) by removing salient
features in the background.

Figure 7: Correctly classified (left 2) and incorrectly clas-
sified (right 2) profile images; Other profile-like objects
nearby confuse the model.

Figure 9 shows a pair of profile images, where the second
one is mis-classified because other profile-like objects near
the tree of interest interferes with the classification. Thus,
in cases where the background cannot be cleared, photogra-
phers should try to minimize the number of similar objects
in the background.

Equally problematic is issue (2). In this pair of canopy
photos, the model predicts the correct label when it attends

Figure 8: Correctly classified (left 2) and incorrectly classi-
fied (right 2) canopy images; The full distribution of leaves
is not captured.

to many of the leaves there, thereby capturing the full dis-
tribution of leaves. By contrast, the model only focuses on
2 or 3 leaves in the mis-classified case. Therefore, We con-
jectured that canopy photos need to capture a larger number
and a wider distribution of leaves. We noticed the same pat-
terns in other canopy examples as well, where poorly-scoped
images lead to the omission of key canopy features and in-
correct classification.

Recommendation for Data Gathering
Practices

From a macro feature perspective, photographers should fo-
cus more on leaf and profile pictures. Bark on the other
hand does not add much and can likely be removed from
the dataset collection.

Apart from identifying the prominent features, our analy-
sis also confirms, or, in certain cases, complements, current
guidelines for image capturing. More concretely, we propose
the following guidelines for photographers on the ground,
driven by our micro-feature analysis:

• Bark images should focus on areas of the bark that are
clear of other foliage and avoid areas with excessive
shading.

• Branch images should make the tips of leaves visible.
• Canopy images should show the full distribution of

leaves, instead of just a few leaves.
• Leaf images should contain only 1 leaf in the photo with

a cleared and smooth background.
• Profile images should have as few other trees and vines

in the background as possible

To summarize, in all cases, photographers should aim to
avoid the two types of errors mentioned previously by min-
imizing noise in the image while including key characteris-
tics of the part they are capturing.

Conclusion
In this paper, we introduce BiomeAzuero2022, a tree im-
age data set consisting of 9071 images taken in Azuero,
Panama and the associated species labels grouped by parts
of trees, in hopes of encouraging the machine learning com-
munity to take on the challenge of identifying the tropical
dry forest inventory from ground images. We also present
baselines for species classification and a feature-importance-
based methodology for improving the data gathering pro-
cesses for tree images.
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