
A Tale of Two Measures: Fair Classification at Any Decision Threshold

Kweku Kwegyir-Aggrey,∗† Jessica Dai,∗‡ A. Feder Cooper,✠
John P. Dickerson,∗ Keegan Hines∗

∗Arthur †Brown University ‡University of California, Berkeley ✠Cornell University

Abstract

We study the problem of post-processing a supervised
machine learning regressor to maximize fair classification
at all decision thresholds. Specifically, we show that by
decreasing the statistical distance between each group’s
score distributions, we can increase fair performance across
all thresholds at once, and that we can do so without a
significant decrease in accuracy. To this end, we introduce
a formal measure of distributional parity, which captures
the degree of similarity in the distributions of classifications
for different protected groups. In contrast to prior work,
which formalizes a measure of Strong Demographic Parity
by examining positive rates, our measure applies to a large
class of fairness metrics. Our main result is to put forward a
novel post-processing algorithm based on optimal transport,
which provably maximizes distributional parity. We support
this result with experiments on several fairness benchmarks.

1 Introduction
There is a growing gap between algorithmic fairness
research and the empirical realities of deploying fair models
in practice. In fair ML scholarship, a common paradigm in-
volves training a classifier with a chosen decision threshold
to attain a certain degree of accuracy, and then post-
processing the classifier to correct for unfairness, according
to a chosen fairness definition (Calders, Kamiran, and Pech-
enizkiy 2009; Hardt, Price, and Srebro 2016; Pleiss et al.
2017). Despite the preeminence of this approach, it is well-
known that the specific choice of decision threshold can
influence both fairness and accuracy in practice (Barocas,
Hardt, and Narayanan 2019) (Figure 1). When deploying
a classifier, practitioners typically need to tinker with the
threshold and evaluate if the resulting model meets their
domain-specific needs. Moreover, even once a threshold is
selected, needs may change over time, requiring changes in
the threshold (Kallus and Zhou 2019; Chouldechova 2016).

This presents two problems. First, it may be prohibitively
expensive to retrain a model every time practitioners want to
test a different threshold (Alla and Adari 2021; Shankar et al.
2022). Second, practitioners may not even have access to the
training pipeline. It is now common for well-resourced com-
panies and institutions to train and publicly release “general-
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purpose” models trained on proprietary datasets (Cooper
et al. 2022; Kroll 2021); practitioners who use these models
cannot retrain them, even if they had the resources to do so.

Given these tensions, an important research question is to
see if it is possible to design tools that cohere better with ML
practice. One natural strategy is to develop a procedure that
produces regressors that guarantee classification fairness at
all possible thresholds, while simultaneously not having too-
large an effect on accuracy. If a regressor is fair at all thresh-
olds, then a practitioner can do application-specific thresh-
old tuning without ever needing to retrain.

Prior work has researched such all-threshold fairness
guarantees for Demographic Parity (Jiang et al. 2020;
Le Gouic, Loubes, and Rigollet 2020; Chzhen et al.
2020; Gordaliza et al. 2019), using optimal transport to
transform group-conditional score distributions in order
to equalize positive rates (PR) at all decision thresholds
(Figure 1c). While a promising contribution in the study
of all-threshold fairness, this prior work suffers from the
limitation that it only works for Strong Demographic
Parity (i.e., all-threshold Demographic Parity, SDP). As
has been well-known since the landmark paper by Hardt,
Price, and Srebro (2016), and subsequent impossibility
results (Kleinberg 2018; Chouldechova 2016), looking only
at Demographic Parity does not capture the nuances in
unfairness made clear from looking at true positive rates,
false positive rates, and combinations thereof.

The main contribution of our paper is to close this gap.
Similar to how Hardt, Price, and Srebro (2016) expanded
fairness metrics beyond Demographic Parity, we expand
the set of all-threshold fairness interventions beyond Strong
Demographic Parity (Jiang et al. 2020); whereas Hardt,
Price, and Srebro (2016) introduced methods for satisfying
Equalized Opportunity/Odds, we introduce and optimize
Distributional Parity (Definition 3.1), an all-threshold fair-
ness framework that applies to multiple, common fairness
metrics. In summary, we:
• Introduce distributional parity to reason about the sim-

ilarity of group-conditional score distributions with re-
spect to a broad class of fairness metrics (Section 3).

• Prove that distributional parity can be maximized. Our
key insight is to use geometric repair (Feldman et al.
2015), for which we prove properties that enable us to
extend beyond SDP (Section 4).



(a) (b) (c)
Figure 1: (a) applies a threshold τ to groups with score distributions that differ, exhibiting classification disparity. (b) shows
how similar such score distributions exhibit little-to-no decision disparity at any τ . (c) visualizes a technique for interpolating
between group-conditional score distributions to find an intermediate distribution that achieves parity at all τ .

• Provide an efficient post-processing algorithm that
follows directly from our theoretical results and avoids
the need to re-train after changing the decision threshold
(Section 5).

• Demonstrate empirically that our method both encom-
passes the prior work on SDP and outperforms related
methods in practice (Section 6).

2 Fairness Preliminaries
Let X ⊆ Rd be some feature space and G = {a, b} to be
a set of binary protected attributes, for which a is the ma-
jority group and b is the minority group. We define the label
space to be the set Y = {0, 1}, where 1 denotes the positive
class and 0 the negative class. We also assume elements in
X , G, and Y are are drawn from some underlying distribu-
tion, which has corresponding random variables X , G, and
Y . To model predictions made over covariates x ∈ X and
g ∈ G, we use a regressor f : X×G→ Ω, where Ω ⊆ [0, 1]
is a closed subset denoting probabilities. That is, f estimates
the likelihood that some (x, g) yields the positive outcome,
i.e., f(x, g) = Pr(Y = 1|X = x,G = g). We refer to the
probabilities output by f(x, g) = s as scores, given that they
“rank” the covariates (x, g) based on their predicted likeli-
hood of attaining the Y = 1 outcome. Predictions are com-
puted by applying a threshold τ ∈ [0, 1] to scores s. A clas-
sifier is the combination of a regressor f and a threshold τ ;
classifications are made by applying the decision rule 1s≥τ .
Additionally, we refer to the distributions of scores produced
by a regressor for each group as group-conditional score dis-
tributions. For a group g, the group-conditional score distri-
bution has random variable Sg , where Sg ∼ f(X,G)|G =
g. Our main results require describing the probability mea-
sures associated with these distributions. We define P1(Ω)
as the set of probability measures on Ω with finite first-order
moments. µg ∈ P1(Ω) is the probability measure associ-
ated with Sg , where µg = Law(Sg), to which we apply the
following standard assumption:

Assumption 2.1. Any measure with finite first-order mo-
ments µ ∈ P1(Ω) is non-atomic and absolutely continuous
with respect to the Lebesgue measure.

Fairness metrics. We measure fairness using familiar
metrics: Positive Rate (PR), True Positive Rate (TPR), and

Table 1: Fairness metrics. S is the score distribution pro-
duced by a regressor f ; τ ∈ [0, 1] is a decision threshold.

Metric Formula

PRf
g (τ) Pr[S ≥ τ |G = g]

TPRf
g (τ) Pr[S ≥ τ |Y = 1,G = g]

FPRf
g (τ) Pr[S ≥ τ |Y = 0,G = g]

False Positive Rate (FPR), from which popular fairness def-
initions, such as Demographic Parity (PR Parity) (Calders,
Kamiran, and Pechenizkiy 2009), Equal Opportunity (TPR
Parity), and Equalized Odds (TPR and FPR Parity) (Hardt,
Price, and Srebro 2016) are computed. We formally define
these rates for each group by applying a threshold to
group-conditional score distributions, as shown in Table 1.
Prior work on fair classification. Much prior research
either elides the choice of the decision threshold τ by
focusing on already-thresholded decisions (Hardt, Price,
and Srebro 2016), or aims to satisfy one of the above
fairness definitions for a single, fixed threshold (Zafar et al.
2017). Nevertheless, different choices of τ can have direct
effects on fairness and accuracy. Determining the right τ
to achieve a desired level of performance often requires
empirical investigation, and, of course, application perfor-
mance requirements may change over time, necessitating
changes in the threshold (Barocas, Hardt, and Narayanan
2019; Forde et al. 2021; Kallus and Zhou 2019). In tension
with these empirical realities, practitioners may not have the
resources to repeatedly re-train or may lack the ability to do
so. For example, it is an increasingly common paradigm for
model training and model deployment to involve separate
sets of actors: One set of actors uses proprietary data and
algorithms to train and release “general-purpose” models;
practitioners then use these models in potentially-diverse
deployment contexts (Cooper et al. 2022; Kroll 2021).

A potential solution to this problem is to produce a regres-
sor f such that it is fair for all τ . This way, practitioners can
change τ according to their specific fairness and accuracy
needs, and they can do so without retraining f . Prior work
has attempted to do this — providing a method for achiev-
ing Demographic Parity for all τ while preserving classifier



accuracy. Specifically, Jiang et al. (2020) use optimal trans-
port and the Wasserstein-1 distance to show that making
group-conditional score distributions equal is tantamount to
achieving Demographic Parity across all decision thresh-
olds. Chzhen et al. (2020); Le Gouic, Loubes, and Rigol-
let (2020) achieve similar results using the Wasserstein-2
distance. Unfortunately, this prior work does not extend to
the other fairness metrics discussed above; it does not fa-
cilitate enforcing parity of group-conditional score distribu-
tions for TPRg(τ) or FPRg(τ). This is a major limitation,
as prior algorithmic fairness scholarship has repeatedly il-
lustrated that these rates are able to capture more-nuanced
disparities in predictive outcomes across subgroups (Hardt,
Price, and Srebro 2016; Corbett-Davies and Goel 2018).

Accounting for this richer set of metrics is our main
contribution in the sections that follow. To do so, we first
define a way to measure the degree of similarity between
group-conditional score distributions, such that we can
generalize a measurement of PR, TPR, and FPR across all
thresholds (Section 3). Once we have defined this metric,
which we call distributional parity, we can then rigorously
characterize a procedure to maximize it (Section 4): We
can develop a theoretically-backed approach that improves
decision parity with respect to PR, TPR, or FPR at all deci-
sion thresholds τ , without having to retrain the underlying
regressor f (Section 5).

3 Defining Distributional Parity
As in Jiang et al. (2020), we choose to measure the
similarity of group-conditional score distributions using
the Wasserstein-1 distance. To motivate this choice, we
first explain what the Wasserstein-1 distance measures
(Section 3). We then concretely show how it can be applied
to capture our more-general, formal notion of distributional
parity, which, unlike prior work, applies not just to PR
and Demographic Parity, but also to TPR, FPR, and thus
Equalized Odds and Equal Opportunity (Section 3).

Wasserstein-1 Distance
Informally, the Wasserstein-1 distance captures the differ-
ence between probability measures by measuring the cost
of transforming one probability measure into the other. For
two such measures µ1, µ2 ∈ P1(Ω) that satisfy Assumption
2.1, the Wasserstein-1 distance has a closed-form:

W1(µ1, µ2) =

∫
Ω

|F−1
µ1

(ω)− F−1
µ2

(ω)|dω, (1)

where, recall from Section 2, the F−1
µ are the inverse CDFs

of the µ.
Additionally, as we suggest in Section 2, the Wasserstein-

1 Distance (1) can be used to compute PR disparities across
all thresholds Consider a single threshold τ ∈ [0, 1], where
PR disparity is measured by taking the absolute difference in
positive rates across two groups a, b ∈ G at τ , i.e., |PRa(τ)−
PRb(τ)|. A natural way to aggregate these single-threshold
measurements into an all-threshold measurement is to take
their sum across every possible τ , i.e.,

W1(µa, µb) =

∫ 1

0

|PRa(τ)− PRb(τ)|dτ. (2)

Equivalently, we can view this sum as the average-case dis-
parity taken uniformly over thresholds. If we let U(Ω) be a
uniform distribution over Ω, this means that Equation (2) is
equivalent to

W1(µa, µb) = E
τ∼U(Ω)

|PRa(τ)− PRb(τ)|. (3)

This equivalence between (2) and (3) demonstrates that the
Wasserstein-1 distance between group-conditional score dis-
tributions is equivalent to the average amount of PR disparity
for groups a and b across all thresholds.

Distributional Parity
Based on the above, we can now present our first contri-
bution: Extending (2) and (3) to account for TPR and FPR.
We do so in the following definition:

Definition 3.1. For a fairness metric γ ∈ Γ, distributional
parity for regressor f is satisfied when

Uγ(f) ≜ E
τ∼U(Ω)

|γa(τ)− γb(τ)|= 0.

That is, the above definition generalizes the expression in
Equation (3) to γa, γb ∈ Γ, rather than just considering
PRa and PRb. If f attains parity at all thresholds for γ, i.e.,
Uγ(f) = 0, then γa(τ) = γb(τ) for all τ .
Note on prior work. Strong Demographic Parity (SDP),
as originally presented in Jiang et al. (2020); Chzhen et al.
(2020), can be understood as the special case of Defini-
tion 3.1, for which γ = PR.

Furthermore, it is important to note that our definition for
distributional parity is closely related toW1 distance as de-
scribed in Equation 3. This equivalence suggests that using
techniques to reduce the Wasserstein-1 distance between
group-conditional score distributions, e.g. µa, µb, will help
us achieve our goal of developing a framework for enabling
all-threshold parity for PR, TPR, or FPR. In the next section,
we make this suggestion concrete by formally proving that
geometric repair, based on optimal transport, can be used to
maximize distributional parity via post-processing. More-
over, while distributional parity (Definition 3.1) considers a
single γ and not all rates Γ at once, we will show that this
post-processing method works for combinations of rates
(Section 4). This allows practitioners to recover fairness
metrics that consider multiple rates simultaneously, like
Equalized Odds (Hardt, Price, and Srebro 2016).

4 Maximizing Distributional Parity
Relying on our definition for distributional parity (Defini-
tion 3.1), we can now present a theoretical characterization
of how to maximize it. Like Chzhen et al. (2020), we also
rely on optimal transport to accomplsih this (Section 4); ad-
ditionally, we develop the key insight that using geometric
repair enables us develop a method that also applies to TPR,
FPR, and fairness definitions that use these rates (Section 4).
Optimal Transport andW1 Distance
For γ = PR (Jiang et al. 2020), the best way to equate two
measures µa and µb under W1— while also preserving ac-
curacy — is to compute group-specific mappings T ∗

g that



transform them onto some shared target representation µ∗,
which ideally retains properties of the original µa and µb.

More formally, if we transform µa
T∗
a−−→ µ∗ and µb

T∗
b−−→ µ∗,

then clearly T ∗
a (µa) = T ∗

b (µb) = µ∗. This means that both
groups will share the same representation µ∗, and, by Defini-
tion 3.1, will satisfy distributional parity for fairness metric
γ ∈ Γ because, by Equation (1), W1(T

∗
a (µa), T

∗
b (µb)) =

W1(µ∗, µ∗) = 0. Intuitively, we also want to make sure that
µ∗ is a good representation of the original measures µa and
µb, as this will enable us to use µ∗ to produce class pre-
dictions that satisfy γ across all thresholds, while also leav-
ing the original class predictions under µa and µb mostly
unchanged. This strategy for achieving distributional parity
while retaining accuracy raises two questions: 1) how do we
find the best target representation µ∗, and 2) how do we find
the mappings T ∗

g to produce it?
We employ two tools to answer these questions:

Wasserstein-1 barycenters to reason about the ideal, shared
target representation µ∗, and optimal transport plans to rea-
son about the associated mappings T ∗

g . We first introduce
these two concepts generally, and then describe how prior
work computes the specific Wasserstein-1 barycenter µ∗ and
optimal transport plans T ∗

g to attain distributional parity for
PR (i.e., Strong Demographic Parity). Then, we present our
main proof result that extends to other metrics γ.
Wasserstein-1 barycenter. Informally, a Wasserstein
barycenter (Agueh and Carlier 2011) is a weighted com-
position of two distributions, much like a weighted average
or midpoint in the Euclidean sense; it provides a principled
way to compose two measures. Consequently, we can use
barycenters to compose µa and µb, making them our tool of
choice for computing µ∗.
Definition 4.1. For two measures µa, µb ∈ P1(Ω) their λ-
weighted Wasserstein barycenter is

µλ ← argmin
µ′∈P1(Ω)

(1− λ)W1(µa, µ
′) + λW1(µb, µ

′);

and if following Assumption 2.1 is satisfied, admits a closed
form (Santambrogio 2015, Thm 5.28)

µλ = ((1− λ)id+ λT b
a)#µa. (4)

.To complete the weighted-average analogy, λ behaves like
a tunable knob: As λ → 0 then µλ will appear more like
µa, and as λ → 1 the more µλ will appear like µb. Given
this definition, our first task now becomes finding the λ
such that µλ is equivalent to our ideal target representation
µ∗. In Section 4, we show concretely how to find the λ that
satisfies this goal, thereby attaining distributional parity.
Before going into these details, we outline how optimal
transport plans help us solve the second task of finding the
correct mappings T ∗

g .
Optimal transport plans. The T ∗

g that transform µa and µb

into µ∗ are called the optimal transport plans, where optimal
refers to the least costly transformation from µg → µ∗, with
cost defined via the ℓ1 norm on Ω (Section 3 and Appendix).
For measures µa, µb, and their λ-weighted Wasserstein-
1 barycenter µλ, (without loss of generality) the optimal
transport plan from µa → µλ is denoted Tλ

a ; it is defined

as Tλ
a (ω) = F−1

µλ
(Fµa(ω)) where ω ∈ Ω (Santambrogio

2015). Therefore, for the ideal target representation µ∗ that
yields distributional parity, we denote the associated optimal
transport plans T ∗

a and T ∗
b .

Note about prior work. Jiang et al. (2020) uses λ-weighted
Wasserstein-1 barycenters and optimal transport plans to
find the µ∗ and T ∗

g that equalize PR for both groups at
all thresholds. For the λ that yields µ∗, the authors set
λ = pa, where pa = Pr(G = a). They then show that the
pa-weighted Wasserstein-1 barycenter of µa and µb exactly
computes our target µ∗, i.e.,

µ∗ ← argmin
µ′∈P1(Ω)

paW1(µa, µ
′) + (1− pa)︸ ︷︷ ︸

pb

W1(µb, µ
′), (5)

which can be achieved with T ∗
g (ω) = F−1

µ∗
(Fµg

(ω)). The
authors then define the Strong Demographic Parity regres-
sor f∗(x, s) ≜ T ∗

g (f(x, g)); they show that, in addition to
satisfying SDP, T ∗

g minimizes changes to the predicted class,
further corroborating our above described intuition.

Despite the success of this approach, it is easy to show that
its restriction to PR, i.e., demographic parity, does not solve
distributional parity for other metrics. Kleinberg (2018) and
Chouldechova (2016) show that unless some very strict con-
ditions are met (which do not hold in our setting), satisfying
PR parity at any decision threshold guarantees disparity in
TPR or FPR at that same threshold; we cannot be fair for all
metrics at once! This impossibility, paired with the myriad
fair algorithmic scholarship advocating for better metrics,
suggests the need for an all-threshold approach that accounts
for other metrics.

Extending to other metrics using geometric repair
Similar to how Hardt, Price, and Srebro (2016) expanded
fairness metrics beyond Demographic Parity, we expand the
set of all-threshold fairness interventions beyond Strong De-
mographic Parity (Jiang et al. 2020); whereas Hardt, Price,
and Srebro (2016) introduced methods for satisfying Equal-
ized Opportunity/Odds, we introduce and optimize Distribu-
tional Parity (Definition 3.1), a general all-threshold frame-
work that applies to multiple useful and common fairness
metrics. In this section, we present our solution to produce
all-threshold guarantees that apply to PR, TPR, or FPR. Our
key insight is to use geometric repair — a tool that lets us
prove all-threshold parity guarantees for all γ.

Geometric repair was initially proposed as a way to
balance demographic parity against accuracy objectives at
all thresholds; it interpolates between some regressor f and
the SDP-corrected version of this same regressor, f∗.
Definition 4.2. Let f be a regressor and f∗ be its SDP-
corrected version. We call λ ∈ [0, 1] the repair parameter
and define a repaired regressor fλ as

fλ(x, g) ≜ (1− λ)f(x, g) + λf∗(x, g)

Under this parametrization, fλ=0 is the original f , and fλ=1

recovers f∗. For this reason, we refer to f as the unrepaired
regressor.

We prove properties of geometric repair that make it well-
suited to address the all-threshold problem for other met-
rics. First, we show that geometric repair is not a destructive



transformation: We prove that it minimally impacts empiri-
cal risk while maximizing parity (i.e., performance preser-
vation), and that it does not change the relative ordering
scores (i.e., rank preservation). These results build on prior
work (Feldman et al. 2015; Chzhen and Schreuder 2022).
Our third result is a novel convexity theorem, for which we
prove that, within the set of fλ-repaired regressors, we can
maximize distributional parity (Definition 3.1) (i.e., distri-
butional parity is convex in λ).
Performance preservation. Suppose we want to bound the
performance of fλ under a risk minimization framework
like Chzhen and Schreuder (2022); Le Gouic, Loubes, and
Rigollet (2020). If we define risk as R1(fλ) ≜ ∥f − fλ∥1
1, then the following relationship between the risk of fλ and
f∗ holds:
Proposition 1. For any fλ,R1(fλ) ≤ R1(f

∗). More specif-
ically,R1(fλ) = λR1(f

∗),∀λ ∈ [0, 1].
From this proposition, we can understand λ as a pa-

rameter that controls the trade-off between the risk of the
Strong Demographic parity-attaining f∗ and f . Moreover,
Chzhen and Schreuder (2022) shows that geometric repair
is Pareto optimal with regard to the fairness-accuracy trade-
off: {fλ}λ∈[0,1] forms a Pareto frontier in the multi-objective
minimization of risk and maximization of distributional par-
ity for PR.
Rank preservation. We also show that fλ never changes
the percentiles of scores induced by the original f . This en-
tails a property called rational ordering, as introduced in Lip-
ton, McAuley, and Chouldechova (2018, p. 6): “within each
group, individuals with higher probability of belonging to
the positive class are always assigned to the positive class
ahead of those with lower probabilities.”
Proposition 2. Any fλ is rank preserving and therefore sat-
isfies rational ordering. That is, for any λ ∈ [0, 1], τ ∈ Ω,
and (x1, g), (x2, g)

if f(x1, g) ≤ f(x2, g),

then fλ(x1, g) ≤ fλ(x2, g).

Convexity of distributional parity. Finally, we show that
distributional parity is convex in the set of fλ-repaired re-
gressors, where convexity here implies the existence of some
optimal fλ∗ . This means that we have finally arrived at our
goal — we can find the repaired regressor that maximizes
distributional parity (within the set). For readability, we in-
clude the details for this result in the Appendix. Here, we
instead provide a proof sketch outlining our strategy.
Theorem 1. Recall Uγ denotes distributional parity (Defini-
tion 3.1). Fix γ ∈ Γ, and let f be a regressor and fλ be this
regressor under geometric repair for any λ ∈ [0, 1]. The map
λ 7→ Uγ(fλ) is convex in λ. That is, if λ∗ satisfies

λ∗ ← argmin
λ∈[0,1]

Uγ(fλ),

then fλ∗ is the distributional-parity-maximizing regressor in
the set of repaired regressors.

1This result appears in Chzhen and Schreuder (2022); Le Gouic,
Loubes, and Rigollet (2020) works for the ℓ2 norm.

Algorithm 1: Post-Processing for Distributional Parity
Input: Labeled training dataset D = {(xi, gi, yi)}Ni=1,
regressor f , γ1...γm ⊆ Γ

procedure FINDOPTIMAL(D, f, γ1...γm)
1. Compute the empirical barycenter µ̂∗ of µ̂a, µ̂b from D

(following Cuturi and Doucet (2014))
2. Use µ̂∗ to approximate the SDP regressor f∗ (following

Chzhen et al. (2020)), such that
fλ(x, g) = (1− λ)f(x, g) + λf∗(x, g)

is well-defined.
3. Locate the optimal λ∗, i.e.,

λ∗ ← argmin
λ∈[0,1]

m∑
k=1

Uγk
(fλ).

4. Output: λ∗ and f∗

end procedure

procedure REPAIREDINFER(x, g, f, f∗, λ∗)
5. Output: Repaired score sλ∗ for (x, g):

fλ(x, g) = (1− λ∗)f(x, g) + λ∗f
∗(x, g)︸ ︷︷ ︸

sλ∗end procedure

Corollary 4.1. Since convex functions are closed under ad-
dition, the above theorem also applies to additive combina-
tions of Uγ1

(fλ) + Uγ2
(fλ) + ....+ Uγm

(fλ)

Essentially, Theorem 1 shows that finding the distributional-
parity-maximizing regressor simply reduces to a univariate
optimization problem: Locating the optimal λ∗ such that
fλ∗ satisfies the desired fairness metric, with the following
caveat. Our results for maximizing distributional parity do
not claim that we achieve perfect distributional parity; how-
ever, we are able to show experimentally that our Algorithm
1 is remarkably successful in achieving parity in almost all
cases (Section 6).

5 Post-Processing for Distributional Parity
Our result in Theorem 1 naturally lends itself to a post-
processing algorithm (Algorithm 1), which we describe in
this section and test empirically in Section 6. At a high level,
our algorithm approximates group-conditional score distri-
butions for two groups a and b, finds their Wasserstein-1
barycenter, and then determines the amount of repair (i.e.,
λ∗) toward this barycenter that maximizes distributional par-
ity for a given γ. Recall from Section 4 that, because distri-
butional parity is convex in the space of repaired regressors,
we are guaranteed to locate the optimal λ∗. In practice, at
Step 3 we approximate Uγ(fλ) (Definition 3.1) with a fi-
nite number of thresholds τ , e.g., τ ∈ {0.01, ...0.99}. We
then use an off-the-shelf univariate solver to locate the opti-
mal λ∗, e.g., scipy.minimize scalar. Also note that,
although U is convex, we opt out of using differentiable con-
vex optimization tools, since we cannot compute the deriva-
tive of U without a closed form for the probability density
functions of µa and µb (Appendix).
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Figure 2: Comparing unrepaired and repaired Logistic Regression on Adult Income-Sex.
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Figure 3: Comparing unrepaired and repaired SVMs on Adult Income-Race.

Takeaways. As stated in Sections 1 and 2, the need to re-
train can severely limit the utility of a fairness intervention
in practice. Practitioners may lack the resources to repeat-
edly retrain after adjusting the decision threshold, or may
not have access to the training pipeline for logistical or pro-
prietary reasons (Cooper et al. 2022; Kroll 2021; Alla and
Adari 2021; Shankar et al. 2022). We highlight that our ap-
proach entirely sidesteps these issues because it does not re-
quire model re-training: In our algorithm, we only need to
find the optimal λ∗ once.
Note on prior work. The SDP solution from prior
work (Jiang et al. 2020) or (Le Gouic, Loubes, and Rigol-
let 2020; Chzhen et al. 2020) in theW2 case corresponds to
Steps 1-2 of Algorithm 1. Our approach encompasses SDP;
without much additional cost (i.e., just the optimization at
Step 3), we are able to produce repaired regressors for any
weighted combination of γ ∈ Γ.

6 Experiments
We test Algorithm 1 on several common algorithmic
fairness datasets and models. We discuss only a small,
representative subset of these results in the main paper, but
include more comprehensive results in the Appendix.
Datasets and tasks. We highlight results for two datasets:
Adult Income-Sex from the the UCI repository (Dua

and Graff 2017), and Adult Income-Race from the new
datasets produced in Ding et al. (2021). For both datasets,
the task is to predict whether (1) or not (0) an individual’s in-
come exceeds $50,000. In Adult Income-Sex and Adult
Income-Race, the protected attributes are sex and race, re-
spectively, with these attribute names and values drawn from
US census data.

Procedure. For each experiment, we split each dataset into
three equal parts for 1) training the original regressor f ,
2) finding the optimal λ∗ and repaired regressor f∗ (i.e.,
running FINDOPTIMAL in Algorithm 1), and 3) testing the
fairness and accuracy of f∗ to see how well it maximizes
distributional parity (i.e., running REPAIREDINFER in Al-
gorithm 1). We run this three-part procedure 10 times with
different random seeds, and present statistics computed over
these 10 trials.

In Step 1, we train f (either Logistic Regression (LR)
or an SVM), using scikit-learn with its default model pa-
rameters and optimizers (Pedregosa et al. 2011). In Step
5, where we test f∗ we produce binary classifications by
thresholding f∗ at a finite set of decision thresholds τ ∈
{0, 0.01, 0.02, ..., 0.99, 1}. We compute γ = PR and γ =
TPR, as described in Section 2. We compute equalized odds
by summing FPR and FNR, i.e., the misclassification rate.

We provide two sets of results: 1) validating that Algo-



(a) (b)
Figure 4: For LR on Adult Income-Sex and γ = TPR (Equality of Opportunity), we show how Algorithm 1 (a) outperforms
other methods in terms of distributional parity and (b) simultaneously preserves accuracy.

rithm 1 achieves almost-exact distributional parity for both
SDP and other metrics; 2) showing that related methods
under-perform Algorithm 1 in terms of distributional
parity. Moreover, we show that Algorithm 1 also generally
preserves accuracy.

Validating distributional parity. Figures 2 and 3 evaluate
how well the repaired regressor f∗ performs in comparison
to the unrepaired regressor f , with respect to different
fairness metrics γ for LR on Adult Income-Sex and
SVMs on Adult Income-Race. Each plot shows the
group-conditional scores at different thresholds. For each
figure, the columns show different metrics γ; the top rows
show how the unrepaired f performs for γ, while the bottom
rows show f∗. Each f∗ uses a different λ∗ computed by
Algorithm 5 (Appendix).

In both Figures 2 and 3, the overall takeaway is that
Algorithm 1 effectively maximizes distributional parity
for different datasets, models, and fairness metrics γ —
achieving parity at almost every threshold. The top rows of
both these figures demonstrate that f generally exhibits very
different group-specific performance in terms of γ at differ-
ent thresholds. In contrast, our repaired f∗ does an excellent
job of maximizing parity for γ across all τ , as is clear by the
nearly-completely-overlapping group-specific performance
curves. We also highlight that the plots in Figures 2a and 3a
show results that can be achieved by both prior work (Jiang
et al. 2020) and our algorithm, i.e., achieving distributional
parity for γ = PR. In contrast, the plots shown in Figures 2b
and 3b demonstrate results that are unique to our approach:
Beyond SDP, Algorithm 1 can produce f∗ that account for,
e.g., Equal Opportunity or Equalized Odds.

Comparing distributional parity across methods. In
Figure 4a, we provide an example illustrating how our
method compares to others in achieving distributional parity
for TPR. As discussed throughout this work, there are no
existing methods that attempt to achieve fair classification
at all thresholds for TPR and FPR, which makes direct com-
parisons challenging. Nevertheless, we pick two methods
that we think are reasonable to examine: the SDP algorithm
from Jiang et al. (2020); Chzhen et al. (2020) and the
pre-processing geometric repair algorithm in Feldman et al.
(2015). We believe that the former (in purple) is a natural
baseline, given that our work generalizes SDP to other

fairness metrics; since SDP can only perform full repair, we
can interpret the results as similar to our algorithm, but with
the repair parameter λ = 1. Since Feldman et al. (2015) (in
blue) is a pre-processing method, unlike our algorithm, it re-
pairs inputs rather than outputs. While Feldman et al. (2015)
generally performs well (though worse than Algorithm 1),
there are two additional observations worth emphasizing.
First, Feldman et al. (2015) contains hyperparameters that
require tuning to identify the best possible all-threshold
performance that can be achieved for any repair-level λ.
This means we have to train f multiple times before we can
confidently produce the optimal f∗. In contrast, our method
more-efficiently finds the optimal λ in the set of regressors
in just one post-processing run. Second, as shown in the
visualization of the standard error, our method achieves
more-consistent performance than Feldman et al. (2015)
across the 10 trials.

Altogether, the takeaway is that Algorithm 1 maximizes
distributional parity — the green line in the figure is close
to 0, indicating parity in TPR across thresholds. In contrast,
while other methods improve upon the unrepaired scores,
they are unable to match our method. Importantly, support-
ing our theory in Section 4, Figure 4b verifies that we are
able to maximize distributional parity while achieving accu-
racy that is close to the original, unrepaired regressor.

7 Conclusion and Future Work

Our title, a play on words of the name Charles Dickens’s
popular work, succinctly summarizes our contribution: we
show that by interpolating between group-conditional score
distributions and their associated measures, we can gener-
alize distributional approaches to all threshold fairness be-
yond demographic parity; namely, TPR and FPR, two com-
mon fairness measures. To this end, we introduce distri-
butional disparity to measure decision parity at all thresh-
olds, and provide a novel post-processing algorithm that 1)
is theoretically-grounded by our convexity result, and 2) per-
forms extremely well across a variety of benchmark datasets
and tasks. In future work, we hope to position this work in
context with other fairness metrics like calibration, and also
in context with fair impossibility results.
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A Additional Background on Optimal
Transport

In this section of the Appendix, we provide additional details
for topics we could not fit into the main body of the paper.
For readers familiar with Optimal Transport, much of the
below material will not be new; nevertheless, we encourage
all readers to use these sections as reference as they see fit.

Additional Notation. Let O = Ω × Y × G. We define
our probability measures w.r.t. a probability space (O,F ,P)
where F is a σ−algebra on O. P is the measure associated
with the full joint distribution, and as defined above, µ are
the measures for the underlying associated marginal distri-
butions.

The id function is shorthand for the identity function, i.e,
id : Ω→ Ω and id(s) = s for s ∈ Ω. Additionally we de-
note the push-forward operator as f#µ (see Peyré and Cu-
turi (2018), Remark 2.5) where f is a measurable function
pushing mass from a measure µ.

We also include the following remark, as we make use of
it in the proof of Theorem 1 (Section B).

Remark A.1. If µa, µb are non-atomic, then T b
a is contin-

uous and non-decreasing (see Santambrogio (2015, p.55)
where T#µa = µb.

Barycenters
In general, and as stated above, Wasserstein-1 barycenters
are defined as the solution to the following minimization
problem:

Definition A.1. For two measures µa, µb ∈ P1(Ω), their
λ-weighted Wasserstein-1 barycenter is

µλ ← argmin
µ′∈P1(Ω)

(1− λ)W1(µa, µ
′) + λW1(µb, µ

′);

As shown in Santambrogio (2015, Thm 5.28), when As-
sumption 2.1 is satisfied, these measures satisfy a relatively
simple closed form:

µλ = ((1− λ)id+ λT b
a)#µa. (6)

In cases where we explicitly state that some barycenter-
like-interpolation begins at a group-specific µ, we will in-
clude the group in the subscript, e.g., µa,λ = ((1− λ)id+
λT b

a)#µa.
Additionally, we include the following proposition which

reveals a convenient property of barycenters that we make
use of in the proof of Theorem 1 (Appendix B):

Proposition 3. (Proposition 1.3 from McCann (1997)) Let
µa, µb ∈ P1(Ω) satisfy Assumption 2.1 and let µλ be the
barycenter of µa and µb. Then µa,λ = µb,1−λ and µb,λ =
µa,1−λ.

Next, we introduce a result from prior work that show that
the set of barycenters {µλ}λ∈[0,1] admit a linear-like geo-
metric structure in the space of probability measures, much
like the linear interpolation performed in Equation (6). To
clarify this result, we first introduce two new terms: Wasser-
stein Spaces, and (Wasserstein) Geodesics. First:

Definition A.2. The Wasserstein-1 Space is the set of distri-
butions P1(Ω) endowed with theW1 metric.

In other words, the Wasserstein-1 Space is exactly a met-
ric space over probability measures with finite first order
moments, where the Wasserstein-1 distance is the chosen
metric between them. To this end, it is well-known that
the Wasserstein Distance satisfies the properties of a metric
(Peyré and Cuturi 2018), e.g, the triangle inequality.

Second, we introduce geodesics. Informally, in a metric
space, a geodesic is the shortest path between two points.
Formally:

Definition A.3. Let λ1, λ2 ∈ [0, 1]. A curve η : [0, 1] →
P1(Ω) is a geodesic2 inW1(Ω) if

W1(η(λ1), η(λ2)) = |λ2 − λ1|W1(η(0), η(1))

Geodesics are useful for making our informal, intuitive
understanding of barycenters more precise. So far, we have
described a barycenter as the least-expensive composition of
two probability measures. We can alternatively understand
this “least-expensive” intuition in precise geometric terms
— i.e., as a geodesic.

Using Definitions A.2 and A.3, we state the following the-
orem:

Theorem 2. (Theorem 5.27 from Santambrogio (2015))
Suppose that Ω is a convex set. Let µa, µb ∈ P1(Ω) satisfy
Assumption 2.1. If T b

a is an optimal transport plan from µa

to µb then the set of barycenters between these distributions
is exactly the curve µλ = ((1− λ)id+ λT b

a)#µa, which is
a geodesic inW1(Ω).

Informally, this theorem states that interpolation along λ-
barycenters produces a geodesic inW1(Ω)

It is important to note that, in general, the Wasserstein-1
space is not convex (Adve and Mészáros 2020); however, we
can exploit the geometry of geodesics to make special-case
convexity claims.

Connecting Barycenters and Geometric Repair
Recall from the definition of geometric repair that we can
define a repaired regressor fλ as

fλ(x, g) ≜ (1− λ)f(x, g) + λf∗(x, g),

where λ ∈ [0, 1] is the repair parameter and f∗(x, g) =
T ∗
g (f(x, g)). Given that f(x, g) is the original score, and

f∗(x, g) = T ∗
g (f(x, g)) is the transformed score, we can

we equivalently define geometric repair as

fλ(x, g) = ((1− λ)id+ λT ∗
g ) ◦ f(x, g)

2Most precisely, this is the definition for a constant-speed
geodesic, however we ignore this imprecision for clarity.



If we we use the geometric repair definition to push-forward
µg , the measure by which the scores for group g are dis-
tributed, then we obtain the measure(s) which govern fλ

((1− λ)id+ λT ∗
g )#µg = Law(fλ(X, g)), (7)

for which we denote Law(fλ(X, g)) as µg,λ. From this
equality we can draw a connection between wasserstein
barycenters and geometric repair – ultimately showing that
as we vary the repair parameter, we are actually interpo-
lating between each group’s score distribution and the SDP
barycenter distribution µ∗.

Which λ is Which? So far, we’ve introduced two styles
of notation to discuss the interpolation of measures via
barycenters, they are µλ, and µg,λ. To disambiguate their
difference, consider the following:

1. µλ denotes λ-weighted barycenters in a general context,
and is not specific to geometric repair. Recall the formula
for µλ, which is based on our general-case formula for
barycenters (see Section A and Equation (6))

µλ = ((1− λ)id+ λT b
a)#µa

In the above, we omit groups from the subscript because
we tend to emphasize the transportation is happening
from µa to µb.

2. µg,λ denotes the interpolation of some group’s condi-
tional distribution toward its pa-barycenter, denoted µ∗
(recall this is the SDP solution by Equation (5)) as a re-
sult of geometric repair, i.e.,

µg,λ = ((1− λ)id+ λT ∗
g )#µg. (8)

Under geometric repair, each group’s distribution is
moving toward the barycenter, so the difference be-
tween group a’s λ-repaired distribution, and group b’s λ-
repaired distribution, is significant – hence the additional
notation.

With this in mind, we revisit Proposition 3 in the context
of geometric, and introduce the following Lemma, which we
use in the proof of Theorem 1.

Lemma A.1. Let µa, µb ∈ P1(Ω) satisfy Assumption 2.1
and let µa,λ be the λ-barycenter of µa and µ∗, and let µb,λ

be the λ-barycenter of µb and µ∗ then

µa,λ = µb, 1−paλ
1−pa

µb,λ = µa, 1−λ
pa

+λ

Proof. Recall by Equations (8) and (6) that µa,λ =
µλ(1−pa). Similarly, µb,t = µ1−tpa . To prove the Lemma,
we need some λ s.t. λ = t, such that λ becomes geometric
repair parameter for both groups. Letting λ(1−pa) = 1−tpa
and solving for λ, yields the proposition, i.e., λ = 1−tpa

1−pa
and

therefore µa,λ = µb, 1−paλ
1−pa

. The second equivalence follows
symmetrically, by swapping t and λ.

Fairness Metrics as Functionals In general, we can view
fairness metrics as a functionals over the space of probabil-
ities. Specifically, the fairness metrics we consider in this
work can be written as a “potential energy” functional and
are defined by the integral of a given function taken over
some measure.
Definition A.4 (Potential Energy). The potential energy of
a function V : Ω → R over some measure µ ∈ P1(Ω) is
defined

V(µ) =
∫
Ω

V dµ. (9)

To express fairness metrics as a potential energy func-
tional we need: the indicator function, a threshold, and the
some group conditioned score measure. For example, we can
re-write the positive rate for group g as

PRg(τ) = E
s∼S

[1s≥τ |G = g] =

∫
Ω

1s≥τdµg. (10)

where the last equality follows by definition of conditional
expectation. Similarly, we could express γ ∈ {TPR,FPR}

γg(τ) = E
s∼S

[1s≥τ |G = g,Y ] =

∫
Ω

1s≥τdµg|Y . (11)

Displacement Convexity Conceptually, displacement
convexity describes the phenomena that some functional
on probability measures is convex as one interpolates
between two distributions, along their barycenters – recall
that these barycenters form a geodesic (Theorem 2). Since
the interpolation of score distributions via geometric repair
produces a Wasserstein geodesic, displacement convexity is
a tool well suited to help us characterize the convexity of
fairness metrics under geometric repair.
Definition A.5. (Definition 7.2 from Agueh and Carlier
(2011))A functional V : P1(Ω) → [0, 1] is said to be dis-
placement convex if the mapping λ 7→ V(µλ) is convex
where µλ = ((1 − λ)id + λT b

a)#µ is a geodesic between
any µa, µb ∈ P1(Ω) that satisfy Assumption 2.1.

The following theorem provides a necessary and suffi-
cient condition to determine if potential energy functional is
displacement convex. Unsurprisingly, the displacement con-
vexity of the functional V rests entirely on the convexity of
the function V that it integrates over.
Theorem 3. (Proposition 7.25 from Santambrogio (2015)
and Proposition 7.7 from (Agueh and Carlier 2011)) The
functional V is displacement convex iff V is convex.

In the case of fairness metrics, the function V is the indi-
cator function over a score s ∈ Ω at some τ i.e. 1[s≥1]. In
general, the indicator function is convex, when the set it is
indicating is also convex set (Frémond 2017). Clearly, [τ, 1]
is a convex set, making the indicator function a convex func-
tion in our setting. From this, we can easily establish that
γ(·) by Equation (11).

B Proofs
Proof of Proposition 1
Recall that Proposition 1 claims that geometric repair (Def-
inition 4.2) is performance-preserving. In Section 4, we in-



formally define performance preservation to mean that par-
ity is maximized while minimally impacting empirical risk.

Formally, we suppose that we want to bound the per-
formance of fλ under a risk minimization framework
like Chzhen and Schreuder (2022); Le Gouic, Loubes, and
Rigollet (2020). If we define risk as R1(fλ) ≜ ∥f − fλ∥1,
then the following relationship between the risk of fλ and
f∗ holds:

Proposition 1, For any fλ, R1(fλ) ≤ R1(f
∗). More

specifically,R1(fλ) = λR1(f
∗),∀λ ∈ [0, 1].

Proof. By definitionR1(fλ) = ∥f−fλ∥= ∥f−(f+λ(f∗−
f))∥= λ∥f−f∗∥= λR1(f

∗). The claimed inequality easily
follows.

We note that this result for the ℓ1 norm is directly re-
lated to those that appear in Chzhen and Schreuder (2022);
Le Gouic, Loubes, and Rigollet (2020) for the ℓ2 norm.

Proof of Proposition 2
Recall that Proposition 2 claims that geometric repair (Def-
inition 4.2) is rank-preserving. In Section 4, we informally
define rank preservation to mean that the repaired regressor
fλ never changes the percentiles of scores induced by the
original, unrepaired f . This entails a property called ratio-
nal ordering, introduced in Lipton, McAuley, and Choulde-
chova (2018, p. 6), which informally means that “within
each group, individuals with higher probability of belong-
ing to the positive class are always assigned to the positive
class ahead of those with lower probabilities.” Formally,

Proposition 2. Any fλ is rank preserving and therefore
satisfies rational ordering. That is, for any λ ∈ [0, 1], τ ∈ Ω,
and (x1, g1), (x2, g2) then

if f(x1, g1) ≤ f(x2, g2),

then fλ(x1, g1) ≤ fλ(x2, g2).

Proof. As shown in Section A we can write fλ as fλ(x, g) =
((1−λ)id+λT ∗

g )◦f(x, g). However, the sum (1−λ)id+
λT ∗

g is non-decreasing since it is the sum of non-decreasing
T ∗
g (Remark A.1) and id (by Definition). Since fλ is non-

decreasing, we can conclude the proof.

Proof of Theorem 1
Theorem 1. Recall Uγ denotes distributional parity (Def-
inition 3.1). Fix γ ∈ Γ, and let f be a regressor and fλ be
this regressor under geometric repair (Definition 4.2) for any
λ ∈ [0, 1]. The map λ 7→ Uγ(fλ) is convex in λ. That is, if
λ∗ satisfies

λ∗ ← argmin
λ∈[0,1]

Uγ(fλ),

then fλ∗ is the distributional-parity-maximizing regressor
in the set of repaired regressors.

Proof. Let γ ∈ Γ. To prove convexity, we show that
d2

dλ2Uγ(fλ) is non-negative everywhere. First, we remind
readers the definition of Uγ(fλ) (distributional parity):

Uγ(fλ) ≜ E
τ∼U(Ω)

|γa(τ)− γb(τ)|.

where γg is a fairness metric on the score distributions of fλ
for group g ∈ G.

To compute this derivative, we will first compute the
derivative of γa(τ) − γb(τ), and then use this to compute
the derivative of the Eτ∼U(Ω)|γa(τ)− γb(τ)|.

First, we analyze the derivative(s) of γa (wlog). As stated
in Section A, we can express γa as a potential energy
functional (see Definition A.4) of some repaired group-
conditional score measure µg,λ. Let Vτ (s) := 1s≥τ where
s ∈ Ω. Then γa is defined (see Equation 11)

γa(τ) =

∫
Ω

Vτdµa|Y ,λ

where µa|Y,λ is µa,λ further conditioned on Y . As we pro-
ceed, we suppress the Y from the notation, instead writing
µa,λ; however, the reader should keep in mind that this re-
sult is general, and that this suppression is for brevity and
will not affect the computations that follow.

By Theorem 2, {µa,λ}λ∈[0,1] is a geodesic. Therefore, we
can rewrite any µa,λ as µa,λ := ((1 − λ)id + λT ∗

a )#µa.
Recall T ∗

a is the optimal transport plan from µa to the pa-
weighted barycenter µ∗ As one final notational convenience,
we use πg,λ to denote (1 − λ)id + λT ∗

g . We’ll first utilize
this notation for the group a case. Using these substitutions,
we have (wlog) that µa,λ := (πa,λ)#µa, so γa can be equiv-
alently written

γa(τ) =

∫
Ω

Vτd(πa,λ#µa).

Next we’ll apply several change of variables in order to
write the above integral w.r.t the Lebesgue measure. The
first change of variables follows by definition of the push-
forward operator

γa(τ) =

∫
π−1
a,λ(Ω)

Vτ (πa,λ)dµa =

∫
Ω

Vτ (πa,λ)dµa.

We use the following argument to reason why the domain
of integration is unchanged after the reader: by Remark, A.1
that T is continuous and non-decreasing. Over a closed do-
main id is also continuous and non-decreasing. Thus, their
sum, πλ must a bijective function (since it is continuous
and monotone on a closed domain). Since πg,λ is a bijec-
tive mapping from Ω→ Ω, it follows that π−1

g,λ(Ω) = Ω.
Next, we use absolutely continuity to re-write the above

in terms of ℓ, i.e, by Assumption 2.1 µa is absolutely contin-
uous with respect to ℓ meaning that by the Radon Nikodym-
Theorem

γa(τ) =

∫
Ω

Vτ (πg,λ)dµa =

∫
Ω

ρµaVτ (πg,λ)dℓ

where ρµa
is the Radon Nikodym Derivative, i.e., the prob-

ability density function associated with µa. This wraps up
our definition γa. We’ll also need to define this b ∈ G. To
do this, we invoke Lemma A.1, i.e., µb,λ = µa, 1−λ

pa
+λ. With

this in mind, we can write the following, which symmetri-
cally follows from the argument above for the µa case:

γb(τ) =

∫
Ω

ρµa
Vτ (πb, 1−λ

pa
+λ)dℓ



Next, let ha,τ (λ) be the mapping λ 7→ Vτ (µa,λ) and hb,τ (λ)
be defined similarly as λ 7→ Vτ (µa, 1−λ

pa
+λ). Then, the dif-

ference ha,τ (λ) − hb,τ (λ) is simply γa(τ) − γb(τ) for fλ.
We take the derivative of this difference, i.e.,

d

dλ
[ha,τ (λ)− hb,τ (λ)] =

d

dλ

∫
Ω

ρµa

· [Vτ (πa,λ)− Vτ (πb, 1−λ
pa

+λ)]dℓ

=

∫
Ω

ρµa
·
[
d

dλ

(
Vτ (πa,λ)

− Vτ (πb, 1−λ
pa

+λ)
)]

dℓ

where the last equality in the above line follows from Leib-
niz Rule. Straightf-orward computation of the derivative of
Vτ (·) shows

d

dλ
Vτ (πa,λ) = V

′

τ (πa,λ)(T
∗
a − id)

and

d

dλ
Vτ (πb, 1−λ

pa
+λ)

=

(
pa − 1

pa

)
V

′

τ (πb, 1−λ
pa

+λ)id−
(
1− pa
pa

)
V

′

τ (πb, 1−λ
pa

+λ)T
∗
b ,

indicating that the derivative we’re after is nothing more than

d

dλ
[ha,τ (λ)− hb,τ (λ)] =

∫
Ω

ρµa ·
[
T ∗
a (V

′

τ (πa,λ))

+

(
1− pa
pa

)
V

′

τ (πb, 1−λ
pa

+λ)T
∗
b

−
(
pa − 1

pa

)
V

′

τ (πb, 1−λ
pa

+λ)id

− V
′

τ (πa,λ)id)

]
dℓ.

By its definition, the derivative of V
′

τ (πg,λ) is exactly the
Dirac delta function δ(πg,λ − τ). Making this substitution,
the above yields

d

dλ
[ha,τ (λ)− hb,τ (λ)] =∫

Ω

ρµa ·
[
T ∗
a (δ(πa,λ − τ))

+

(
1− pa
pa

)
δ(πb, 1−λ

pa
+λ

− τ)T ∗
b

−
(
pa − 1

pa

)
δ(πb, 1−λ

pa
+λ

− τ)id− δ(πa,λ − τ)id)

]
.

Then, by definition of δ, we at last obtain
d

dλ
[ha,τ (λ)− hb,τ (λ)] =

[
T ∗
a +

(
1− pa
pa

)
T ∗
b

−
(
pa − 1

pa

)
id− id

]
◦ τ.

Since the above does not depend on λ, taking another
derivative simply yields d2

dλ2 [ha,τ (λ) − hb,τ (λ)] = 0. From
this, we take the second derivative of the absolute value of
this difference, i.e.,

(12)

d

d2λ
|ha,τ − hb,τ |=

sign(ha,τ − hb,τ )
d2

dλ2
[ha,τ (λ)− hb,τ (λ)]︸ ︷︷ ︸

= 0

+2 δ(ha,τ − hb,τ )︸ ︷︷ ︸
≃ 0 or 1

(·)2︸︷︷︸
≥0

.

The first term on the r.h.s., we’ve already shown is zero, and
the second term is also non-negative. Another application of
Leibniz’ Rule allows that

d

d2λ
E

τ∼U(Ω)
|ha,τ − hb,τ |︸ ︷︷ ︸
Uγ(fλ)

= E
τ∼U(Ω)

∣∣∣∣∣∣∣∣
d

d2λ
[ha,τ − hb,τ ]︸ ︷︷ ︸
≥0 by (12)

∣∣∣∣∣∣∣∣ .
This indicates that Uγ(fλ) is convex (i.e., we have shown
that the second derivative is non-negative). The existence of
a a solution to λ∗ ← argminλ∈[0,1] Uγ(fλ) is guaranteed
by this fact, therefore indicating that fλ∗ maximizes distri-
butional parity in the set of repaired regressors.

As noted in Section 4, the validity of Theorem 1 indicates
that finding the distributional-parity-maximizing regressor
reduces to a univariate optimization problem. Locating the
optimal λ∗, such that fλ∗ satisfies the desired fairness metric
γ, with the following caveat: Our results for maximizing dis-
tributional parity do not claim that we achieve perfect distri-
butional parity; however, we are able to show experimentally
that our Algorithm 1 is remarkably successful in achieving
parity in almost all cases (Section 6 and Appendix C).

Corollary 4.1. Since convex functions are closed under
addition, Theorem 1 also applies to additive combinations
of Uγ1

(fλ) + Uγ2
(fλ) + ....+ Uγm

(fλ)

C Experimental Configuration and
Additional Results

We provide details about our Algorithm, and experimental
configurations in Section 6, as well as additional results on
other datasets.

Algorithm 1 and Differentiation.
We show in the proof of Theorem B that computing the

derivative of Uγ(fλ) requires knowledge of the probability
density function of either group’s distribution of scores (de-
noted ρµg

). Often, this distribution is not known, therefore
preventing us from using more traditional, derivative based
optimization techniques.



Experimental configuration details, and
reproducibility for main paper results
Code for all experiments, as well as instructions for re-
producing our specific results, can be found in the anony-
mous repository located https://anonymous.4open.science/r/
distributional-fairness-436F/here.

For Figure 4 in the main paper, which compares our
method for achieving distributional parity against other all-
threshold fairness methods, we needed to do extensive hy-
perparameter tuning to find the best-performing repair pa-
rameter for the algorithm in Feldman et al. (2015). In more
detail, the algorithm in Feldman et al. (2015) includes a
repairlevel hyperparameter, which, similar to our λ
(found through optimization, rather than a chosen hyperpa-
rameter), controls the extent to which inputs are adjusted
during pre-processing. We performed grid search using
repairlevel ∈ {0.05, 0.15, 0.2, ..., 0.95, 1.0}. When
comparing our method to that in Feldman et al. (2015) for
a given γ, we do so using the repairlevel that yielded
the best results from grid search for that γ. For our imple-
mentation, we incorporated the open-source implementation
of Feldman et al. (2015), available in the Fairlearn pack-
age (Bird et al. 2020).

Additional experiments
Additional dataset. In addition to the two datasets from
the main paper, we also show results here for the Taiwan
Credit dataset (Bay et al. 2000), where the sensitive at-
tribution is education level and the target variable is good
credit.
Additional models. In addition to Logistic Regression and
SVM models, we show results below for scores generated by
an underlying Random Forest and 2-layer neural network;
again, we use scikit-learn implementations with de-
fault hyperparameters.
Additional Discussion. In our additional experiments we
show that our method works very well across a combination
of models and datasets however, there are two main minor
limitations we’d like to discuss. The experiment in which
we removed the least disparity, was SVMs on the Adult
Income-Sex task, for Equalized Odds, see Figure 6. We have
hypothesized that our method may be ineffective here due
an abnormality in the classifier’s score distributions. Specif-
ically, we point out the SVM hardly assigns scores < .15, for
the Female group, thereby inflating error rates for members
of that group, with scores above 0.15. We look forward to in-
vestigating ways to improve our performance on this task in
future work. Additionally, there are some cases in which we
record very little disparity in the unrepaired regressor. For
some of these cases, despite increasing parity at almost every
threshold, our method marginally decreases parity at certain
select threshold(s), see for example, in Figure 10 at τ = 0.2.
We believe that this effect is neither pervasive nor signifi-
cant; in most cases, we do not see any parity decreases. With
that said, in the scenarios where parity slightly decreases at
a threshold, we note that our algorithm still increases total
parity on average, almost achieving parity across all other
thresholds.

The following figures represent additional results for
models trained on:

• Adult UCI (Dua and Graff 2017) (Figures 5, 6, 7, 8)
• New Adult (Ding et al. 2021) (Figures 9, 10, 11, 12)
• Taiwan Credit(Bay et al. 2000) (Fig-

ures 13, 14, 15, 16)
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Figure 5: Comparing unrepaired and repaired logistic regression on Adult Income-Sex (Dua and Graff 2017).
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Figure 6: Comparing unrepaired and repaired SVMs on Adult Income-Sex (Dua and Graff 2017).
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Figure 7: Comparing unrepaired and repaired Random Forests on Adult Income-Sex (Dua and Graff 2017).
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Figure 8: Comparing unrepaired and repaired MLPs on Adult Income-Race (Dua and Graff 2017).
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(b) Algorithm 1 results for Eq. Odds and Eq. Opportunity

Figure 9: Comparing unrepaired and repaired logistic regression on New Adult Income-Race (Ding et al. 2021).
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Figure 10: Comparing unrepaired and repaired SVMs on New Adult Income-Race (Ding et al. 2021).
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Figure 11: Comparing unrepaired and repaired Random Forests on New Adult Income-Race (Ding et al. 2021).
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Figure 12: Comparing unrepaired and repaired MLPs on New Adult Income-Race (Ding et al. 2021).
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Figure 13: Comparing unrepaired and repaired logistic regression on Taiwan Credit (Bay et al. 2000).
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Figure 14: Comparing unrepaired and repaired SVMs on Taiwan Credit (Bay et al. 2000).
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Figure 15: Comparing unrepaired and repaired Random Forests on Taiwan Credit (Bay et al. 2000).
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Figure 16: Comparing unrepaired and repaired MLPs on Taiwan Credit (Bay et al. 2000).
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