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Abstract

We developed an inherently interpretable multilevel Bayesian
framework for representing variation in regression coeffi-
cients that mimics the piecewise linearity of ReLU-activated
deep neural networks. We used the framework to formulate
a survival model for using medical claims to predict hospi-
tal readmission and death that focuses on discharge place-
ment, adjusting for confounding in estimating causal local
average treatment effects. We trained the model on a 5%
sample of Medicare beneficiaries from 2008 and 2011, based
on their 2009-2011 inpatient episodes, and then tested the
model on 2012 episodes. The model scored an AUROC of
approximately 0.76 on predicting all-cause readmissions (de-
fined using official CMS methodology) or death within 30-
days of discharge, being competitive against XGBoost and a
Bayesian deep neural network, demonstrating that one need-
not sacrifice interpretability for accuracy. Crucially, as a re-
gression model, we provide what blackboxes cannot — the ex-
act gold-standard global interpretation of the model, identi-
fying relative risk factors and quantifying the effect of dis-
charge placement. We also show that the posthoc explainer
SHAP fails to provide accurate explanations.

Introduction

Preventable readmission after hospital discharge is costly.
In 2011, for adult 30-day all cause hospital readmission in
the United States, the cost was about $41.3 billion [Hines
et al. 2014]. To improve outcomes, Medicare, through its
Hospital Readmissions Reduction Program (HRRP) [Mcll-
vennan, Eapen, and Allen 2015], penalizes providers for
readmissions that occur within the 30-days after discharge;
penalties have spurred interest in interventions surround-
ing transitions of care including discharge planning services
such as hand-offs to less-intensive healthcare institutions.
Population-level medical claims data make it possible to as-
sess the efficacy of these interventions retroactively. This
manuscript focuses on the problem of deciding discharge
placement for individuals in order to prevent readmission or
death.

Readmission models: A recent review [Huang et al. 2021]
surveyed properties of readmission models in the litera-
ture. By and large, they found no model type to perform
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consistently better than others, though several studies have
reported marginal improvements using either XGBoost or
neural networks over logistic regression [Shameer et al.
2016, Jamei et al. 2017, Allam et al. 2019, Liu et al. 2020,
Min, Yu, and Wang 2019, Futoma, Morris, and Lucas 2015,
Larsson et al. 2021]. Generally, the literature has focused on
30-day readmissions, though nuances in how readmission is
defined complicate direct performance comparisons. Models
based on medical claims data typically achieved AUROC of
approximately 0.70 for predicting their version of all cause
30-day readmission.

Another factor that complicates the direct comparison
of modeling efforts is differences in datasets — and hence
the underlying patient populations. We are aware of two
readmission studies performed on datasets identical to ours.
Lahlou et al. [2021] created an attention-based neural net-
work for predicting admissions after discharge within 30-
days and reported an AUROC value of 0.81, however, they
did not distinguish between transfers, planned admissions,
and acute admissions in their outcome label so they solve
a different problem that is of less practical utility. More re-
lated to our work, MacKay et al. [2021] developed XGBoost
models for predicting a set of adverse events, reporting an
AUROC of 0.73 for all-cause readmission prediction.

Yet, having a high AUROC is insufficient for making a
model useful. A model needs transparency in order to assess
its validity. Most studies surveyed were aware of the im-
portance of model interpretability, claiming their blackbox
model to be interpretable. Yet, most studies that claim inter-
pretability for their blackbox solutions only offer “posthoc
explainability,” a catch-all phrase for narratives generated in
order to promote a sense that a model is interpretable when
it is not.

Interpretability: The goal of interpretable modeling is to
produce predictions that an end-user can understand [Rudin
2019, 2014], which is a prerequisite for making a predic-
tion actionable. One necessary yet insufficient aspect of in-
trinsic model interpretability is feature attribution. Black-
box models do not admit feature attributions without the
use of unreliable approximations. Conversely, feature attri-
bution is exact in regression models, and each model coef-
ficient has the unequivocal interpretation as the conditional
expected change of the response corresponding to a given
unit of change in the predictor, while fixing the other pre-



dictors. For this reason, even ignoring attributes other than
feature attribution, a significant disconnect separates black-
box models from inherently interpretable models. Fig 1 is
a representation of the spectrum of interpretability focusing
on structured data problems in healthcare.

Computational interpretability is a necessary yet insuf-
ficient attribute for prediction comprehensibility. ReLU-
activated neural networks, matrix composition methods like
principle components analysis (PCA), and large multiple re-
gression models are computationally interpretable, whereas
Deep Learning (DL) models in-general and ensemble trees
methods like XGBoost are not.

However, knowing how a prediction is computed from in-
dividual features does not automatically make the prediction
comprehensible — it may still difficult to understand how a
model behaves as there is a limit to the capacity of informa-
tion that humans can process simultaneously [Miller 1956].
Sudjianto and Zhang [2021] note that additivity, sparsity,
linearity, smoothness, monotonicity, and visualizability are
some attributes of interpretable models that are also com-
prehensible.

The highest bar for interpretability is for a model to be

mechanistically meaningful. These models often leverage
domain knowledge and are capable of providing deep and
robust insights. They also often justify causal interpreta-
tions [Peters, Bauer, and Pfister 2020]. Even if one can truly
understand a model, one often cannot act on it. To be di-
rectly actionable, a model also needs to adjust for biases in
the data so that its prediction of the effects of interventions
can be interpreted causally [Pearl 2009]. Yet, independent of
causal validity, predictive model interpretability is still im-
portant because it allows practitioners to better understand
the risks and biases of a given model.
Posthoc explainable-AI (xAI): Posthoc xAl is a set of tech-
niques to market blackbox models as interpretable (Fig. 1).
The most popular xAI methods (LIME [Ribeiro, Singh, and
Guestrin 2016] and SHAP [Lipovetsky and Conklin 2001,
Datta, Sen, and Zick 2016]), use approximations [Lundberg
and Lee 2017, Aas, Jullum, and Lgland 2021] to provide
narratives of feature importance within a prediction. Other
methods such as attention [Niu, Zhong, and Yu 2021] build
an explanation mechanism as a module within a blackbox
model in order to more-easily compute them [Jain and Wal-
lace 2019, Zhou et al. 2022]. Narratives, convincing as they
might seem, are not necessarily true. In fact, researchers
have shown [Laugel et al. 2019, Kumar et al. 2020, Slack
et al. 2020, Alvarez-Melis and Jaakkola 2018, Zhou et al.
2022] that these methods provide imprecise and unreliable
explanations of models, and often disagree. Aptly, Krishna
et al. [2022] coined this the “disagreement problem” with
posthoc interpretability and conducted a survey of real world
data scientists finding no consistent or principled method to
handle these inconsistencies. As Rudin [2019] notes, “an ex-
planation model that is correct 90% of the time is wrong
10% of the time.” Despite marketing claims, XAl does not
carry blackbox models across even a very minimal bar of re-
quirements for interpretability. If an explanation is not true
to one’s model, any sense that the model is comprehensible
is based on faulty information.

Blackbox models: Methods such as Deep Learning (DL)
and ensemble boosted trees (XGBoost, LightGBM, others)
can model nonlinearities. When copious training data is
available, these methods yield models that are more ex-
pressive than traditional generalized linear models. Most-
generally, blackbox models like DL and ensemble trees are
nonlinear kernel machines (function interpolations) [Domin-
gos 2020]. The convoluted nature of their interpolations
makes these models uninterpretable. Massive investment
exists in these models because of their predictive perfor-
mance and low effort. This existing investment, the chal-
lenge of creating truly interpretable models, and a myth that
blackboxes perform better than interpretable models [Rudin
2019], incentivize the marketing of posthoc-xAl as an alter-
native to interpretable modeling. In finance, a similarly high-
stakes domain, there has been wide resistance to blackbox
modeling, formalized recently in model risk management
guidelines published by The Office of the Comptroller of
the Currency (OCC) [2021]. We should also be wary of the
use of these models in healthcare, where the risk to patients
requires truly trustworthy solutions.

Blackboxes provide clues on how to extend traditional
linear models. DL is the application of artificial neural
networks (ANNs) to prediction problems. ANNs consist
of sequences (or more generally of graphs) of successive
affine matrix arithmetic operations, sandwiched between
activation functions. In general, these methods are black-
boxes, with the exception of ReLU-activated neural net-
works (ReLU-nets for short). Examining ReL.U-nets eluci-
dates the nature of how DL captures nonlinearities. ReLU-
nets use the activation function ReLU(z) = 0 if z <
0 or x otherwise. In these models, ReLU is indepen-
dently applied to each matrix coordinate after each succes-
sive matrix operation. The output of the function is nonzero
if and only if a linear combination of the elements computed
by the prior layer are positive. Hence, ReLU defines an in-
equality over quantities within the model — applied to each
coordinate within each layer, ReLU defines recursive sets
of inequalities. These inequalities collectively segment the
training data into disjoint regions. In sum, ReLU-nets are
composed of regionally-disjoint generalized linear models
— each of which is interpreted in the same manner as lin-
ear regression. Hence, ReLU-nets are computationally inter-
pretable. The salient nonlinearity of these models is locality.
To interpret a specific prediction given by these models, one
needs to map the input to a particular linear submodel. Then,
conditional on this mapping, a ReLU net is locally a simple
generalized multiple linear regression model. Observing this
fact, Sudjianto et al. [2020] provides a tool for exactly inter-
preting trained ReLU neural networks, by unwrapping the
cascades of inequalities. In this manuscript we mimic this
property of ReLU-nets within a well-controlled multilevel
Bayesian regression framework in order to gain expressive-
ness while prioritizing interpretability.

Methods
We generalize the classic readmission problem of within 30
days of discharge, to the likelihood of readmission at any
arbitrary day after discharge. To this end, our objective is



- deep learning
or XGBoost

+ LIME - deep learning
or SHAP (ap- + SHAP
proximations) (exact)

- matrix
decomposition
- regression

models - sparse models - leveraging
- ReLU neural - structured domain
networks models knowledge

blackbox + significant
posthoc xAl > blackbox SHAP > disconnect

computationally . mechanistically
o comprehensible q
interpretable meaningful

no or false interpretability

more intrinsic interpretability

Figure 1: Model interpretability lies along a spectrum with a clear chasm existing between intrinsically interpretable models
others. More-interpretable models are more trustworthy and insightful. Explanations for models without intrinsic interpretability

rely on unreliable approximations to their computations.

to characterize the statistics of the inter-inpatient wait time
T.,. Additionally, we focus on identifying the effects of dis-
charge placement, representing the choices symbolically as
I,,, ranked in terms of health acuity: (0) discharge home, (1)
discharge home with home health, (2) discharge to skilled
nursing, (3) intermediate care/critical access, (4) long term
care, (5) other less-acute inpatient. The issue that compli-
cates the estimation of discharge placement effects is un-
observed confounding — providers use the patient’s health
status in order to decide placement. To resolve the treatment
assignment bias, we model the joint outcomes

Tn ~ f(T7L|w’rL7 Ina a‘ru/@n,v’yn)
Ly ~ g(In|@n, v, §,), D

where x,, € RP is a covariate vector and we explicitly ad-
just for assignment bias. Note that we distinguish between
the scalar-valued I,,, which corresponds to the list of inter-
ventions above, and the vector valued I,, which we will ex-
plain later in this manuscript. For the sake of interpretabil-
ity, we formulate f and g in Eq. 1 as hierarchical multilevel
Bayesian generalized linear regression models, However, to
increase expressivity by introducing the type of nonlinearity
seen in ReL.U-nets, we allow all of the model parameters
o, B, Vs Vn, €, to vary locally [Hastie and Tibshirani
1993, Fan and Zhang 2008, Li, Li, and Feng 2021] across
regions defined by x,, in ways that comport with domain
knowledge.

Data Preprocessing: The available dataset, the CMS Lim-
ited Dataset (CMS LDS), consists of a national 5% bene-
ficiary sample of Medicare FFS Part A and B claims from
2008 to 2012. The 2008 claims had only quarter date speci-
ficity so we used them solely to fill out the medical history
for 2009 inpatient stays, by assuming that each 2008 claim
fell in the middle of its given quarter. We trained the read-
mission models on 2009 — 2011 admissions, and evaluated
the models on 2012 admissions.

After grouping claims into coherent episodes, based on
date, provider, and patient overlap, we filtered for inpatient-
specific episodes with certain characteristics to use as index
admissions. We retained only episodes where the patient had
a continuous prior year of Part A/B enrollment. We also ex-
cluded episodes from consideration as index episodes if they
did not correspond to discharges to less-intensive care (ex-
cluding death and most inpatient-to-inpatient transfers). Ad-

ditionally, we used the official CMS methodology for deter-
mining whether each episode is a planned admission, acute
admission, or potentially planned admission [CMS 2015].
For each episode we then computed the waiting time to ei-
ther the next unplanned acute episode or death, or until cen-
sorship due to the end of the observation window. In the
end, the training dataset consisted of approximately 1.2 mil-
lion inpatient episodes, of which approximately 17% were
followed by an unplanned acute inpatient episode or death
within 30 days. The histogram of the wait times is presented
in Fig. 2.
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Figure 2: Histogram of the wait time after discharge to
the next acute admission or death.

For each episode, we collected all billing codes, creating

lists of concurrent procedure and diagnostic codes. Addi-
tionally, we collected the preceding four quarters of history
for each episode, aggregating billing codes on a lagged quar-
terly basis.
Feature engineering: Medical claims data consists of series
of billing codes in several dialects (ICD9/10, HCPCS, RUG,
HIPPS, etc). We down-sampled diagnostic (Dx) and proce-
dure (Tx) codes, from their original dialects to multilevel
Clinical Classification Software (CCS) codes [AHRQ 2022].
CCS codes are clinically curated hierarchical categories that
are more tractable for analysis and interpretation. Mapping
to CCS drastically removes redundancy in the vocabulary
of the dataset and helps to extract the health-specific infor-
mation in billing codes buried noisy reimbursement-specific
details.

We used AHRQ Healthcare Cost and Utilization Project
(HCUP) databases in order to tag codes for comorbidities,
chronic conditions, surgical flags, utilization flags, and pro-
cedure flags. Included within skilled nursing facility (SNF)
and home health (HH) claim codes are also activities of



daily living (ADL) assessments. We converted these codes
to ADL scores, where higher scores correspond to lower
functional ability. We also incorporated CMS’s risk adjust-
ment methodology, hierarchical condition categories (HCC),
as model predictors. The CMS LDS contains beneficiary
county codes that we used to incorporate the urban rural in-
dex and social economic scale as model features. Together
with beneficiary race information and Medicaid state buy-in,
these variables allowed for some measure of social determi-
nants of health.

We encoded CCS and other code mappings into numerical

vectors by counting the incidences of each permissible code.
In the case of CCS, which is multilevel, we truncated codes
at each of the first two levels and counted at each level. Alto-
gether, the numerically encoded derived features constituted
a vector of size p = 1072, which encompassed both con-
current episode codes and the past four quarters of history,
where CCS was truncated to the first level for history.
Feature quantization: To improve model interpretability,
we made an effort to place all model parameters (log hazard
ratios) on the same scale so that the magnitudes of the pa-
rameters are directly comparable. In examining our derived
data features, we came to find that they were predominantly
sparse and heavy tailed. This finding, and our desire to opti-
mize model interpretability, led us to quantize all numerical
variables so that the input variables into the model are en-
tirely binary. To this end, we first computed the percentiles
for each feature across the entire dataset. Then we re-coded
each quantity into a series of binary variables corresponding
to inequalities, where the cutoffs were determined by exam-
ining each variables at a set of quantiles and eliminating du-
plicate values. Generally, we retained only the quantized fea-
tures in specifying the models except when otherwise spec-
ified. The total size of the feature vector after dropping all
original non-quantized numerical features and all constant
features expanded to p = 3143.
Survival Modeling: For flexibly modeling the wait time
distribution f, we use the piecewise exponential survival
regression model (PEM) [Friedman 1982]. PEMs are de-
fined by specifying the time-dependent hazard A(t) : RT —
R* using a piecewise constant function, where the haz-
ard changes across breakpoints that define disjoint time in-
tervals. The probability density function for the PEM fol-
lows f(t) = A(t)e~ Js Mw)du Tn this manuscript we set the
breakpoints between time intervals at 1 week, 4 weeks, and
9 weeks after discharge. For each episode n, we can estimate
a wait time distribution by estimating the log-hazard within
each time interval 7,

log Api = aini + Bri@n + Vi, 2

where we allow the model parameters to vary across the data
regionally, in a manner that emulates the type of nonlinearity
seen in ReL.U-nets. In Eq. 2 we separate out the discharge
placement effects (v,,) from other effects (3,,). Doing so
makes it easier to structure the model for causally interpret-
ing the discharge assignment effects. We incorporate domain
knowledge by acuity-ordering the interventions, enforcing
monotonicity of intervention effect by constraining the last
five coefficients of £,, to non-positivity.

Causal inference: We model the discharge placement pro-
cess g using an ordinal logistic regression model, where

I,.|p,, ~ Categorical (pno, - - -, Pn5)
pnk|wn7’/n7£n = Pr(ln > k|m7l7u7l7£n)
- Pr(In > kE+ 1|5l7n7 V7L7£n)

Pr(Iy > k|Tn, vn, €,) = logit™" (Vak + &), (3)

where &, are slopes corresponding to episode n and v,, =
[Vn1,- .., V5] are intercepts under the constraints v, <
Vn k+1, Yk, n. The predictions given by this model then feed
back into the prediction of the wait time through a slope term
for each element of the covariate vector I,, = [Pr(In >
1| .. .), Cey PI‘(In > 5‘ .. .), 1]7121, RN 11n25]. Utlhzmg
the discharge placement probabilities as model covariates
adjusts for the confounding bias caused by the selection pro-
cess, in a manner analogous to incorporating the local treat-
ment probability as a covariate [Bafumi and Gelman 2007].
Additionally, directly modeling the treatment effects within
a multilevel model allows us to infer locally-varying treat-
ment effects, partially pooled for stable inference in regions
where the data is sparse [Gelman 2006, Feller and Gelman
2015].

Parameter decomposition: The piecewise linear nature of
ReLU-nets, and the observation that neural networks pro-
duce learned data representations [Goodfellow, Bengio, and
Courville 2016], suggest that an approach to mimicking their
expressivity within regression models is to allows slopes
(and intercepts) to vary across regions of the data. We do
so by expressing each of these regionally-varying parame-
ters using an additive decomposition.

First, for delineating regions in data space (corresponding
to cohorts), we project portions of the input data to lower
dimensions through unsupervised methods. In Chang et al.
[2020], the authors make a connection between sparse prob-
abilistic matrix factorization and probabilistic autoencoders.
We use this approach to develop a low-dimensional repre-
sentation of the portions of the input covariate vector that
pertain to the lagged quarterly history. Then, we compute
the statistics of the learned representation in the training data
and develop for each dimension a set of cut-offs to use for
bucketization. This procedure puts each inpatient episode
into a specific cohort, represented by a location within a mul-
tidimensional lattice, based on medical history. Specifically,
we used a single cut-off (the median) for each of five di-
mensions (Fig. 3), creating a set of 2° = 32 groups based
on history. By design, the rules governing the group assign-
ment can be easily converted to a set of inequalities over
sparse subsets of the original data features. Additionally,
we included interactions between the history groups with
other discrete attributes such as the major diagnostic cate-
gory (MDC), complication or comorbidity (CC) or a major
complication or comorbidity (MCC), and race, to create high
dimensional discrete lattices where the cells define coarse
interaction cohorts in the data. When partitioning data by a
high-order interaction, a big data problem quickly becomes
many small data problems — divide-and-conquer approaches
can suffer from overfitting. To combat this issue, we devel-
oped a multiscale modeling approach where higher-order in-
teractions are regularized by partially pooling their effects
into related lower-order interactions. Specifically, given a
multidimensional lattice that represents all cohorts for which
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Figure 3: History encoding weights for inpatient episodes
where the top seven variables for each dimension of a five
dimensional factorization are shown. The features consist of
multilevel CCS counts of diagnoses and procedures, as well
as counts of the number of episodes, on a quarter-lagged
basis. An episodes history representation is found by linear
combination of history count features of the given weights.

the parameter will vary, we assign for each parameter a value
within the lattice by decomposing the value into the form
zero order first order
—
6(&) — 9(*,*,m,*) +6(n1,*,m,*) + 9(*,n2,*,m,*) +.

second order

4 grrrze®) 4o glrrsrs ) L LHOT,  (4)

where kK = (K1,K2,...,kp) is a D dimensional multi-
index. In practice, we truncate the maximum order of terms
in this decomposition due to memory constraints. More de-
tails on the exact decompositions that we used for our model
parameters can be found in the Supplemental Materials.
Regularization: By design, the parameter decomposition
method inherently regularizes by partial pooling [Gelman
2006]. Additionally, we used weakly informative priors on
the component tensors in these decompositions in order to
encourage shrinkage at higher orders. For the regression co-
efficients, we utilized the horseshoe prior for local-global
shrinkage [Ghosh and Doshi-Velez 2017, Bhadra et al. 2019,
Polson and Scott 2011, van Erp, Oberski, and Mulder 2019].
Please see the Supplemental Materials for more details on
the model specification.

Implementation: We used Tensorflow Probability [Dillon
et al. 2017], developing a set of libraries for managing
the parameter decompositions that is publicly available at
github:mederrata/bayesianquilts.

We trained our model using minibatch mean-field
stochastic ADVI, using batch sizes of 104, and a parame-
ter sample size of 8 for approximating the variational loss
function. We utilized the Adam optimizer with a starting
learning rate of 0.0015, embedded within a lookahead op-
timizer [Zhang et al. 2019] for stability. Each epoch where
the mean batch loss did not decrease, we set the learning rate
to decay by 10%. Training was set to conclude if there was

Model Interpretability = AUROC AUPRC
XGBoost None 0.758 0.497
ReLU-BNN Computationally  0.757 0.500
LR w/o quantization =~ Comprehensibly  0.731 0.381
LR Comprehensibly ~ 0.755 0.481
PEM Mechanistically  0.757 0.497

Table 1: 30-day unplanned readmission or death classifi-
cation metrics for evaluated models: XGBoost, Sparse lo-
gistic regression (LR), Bayesian neural network (BNN), our
Piecewise exponential model (PEM). Quantization refers to
the histogram-based bucketization of real-valued features.
Area under the receiver operator curve (AUROC) and area
under the precision-recall curve (AUPRC) computed on
held-out 2012 inpatient episodes. Models trained on 2009-
2011 episodes. Interpretability judged according to Fig. 1.

no improvement for 5 epochs, or if we reached 100 epochs,
whichever came sooner. More information on the training is
present in the Supplemental Materials. We used scikit-learn
1.1.1 for fitting baseline logistic regression models, and XG-
Boost 1.6.1 for fitting a reference blackbox model for com-
parison. We implemented a horseshoe Bayesian convolution
neural network with ReL.U activation using TFP, where we
used a single hidden layer of size one-fifth the input layer.
For computing global SHAP values, we used regression-
based KernelSHAP [Covert and Lee 2021]. All computation
was performed using the Pittsburgh Supercomputing Cen-
ter’s Bridges2 resources. We utilized extreme memory (EM)
nodes for preprocessing, and Bridges2-GPU-AI for training.

Results

Prediction Accuracy: Table. 1 shows the classification ac-
curacy of our model in predicting readmissions or death
within the first 30 days, benchmarked against predictions
given by alternative models trained on the same dataset.
The standard deviation in both the AUROC and AUPRC
measures, as determined using bootstrap, was approximately
0.003. Quantization of the data features improved the ac-
curacy of logistic regression to nearly match that of XG-
Boost on this dataset as measured by AUROC. Hence, we
used quantization for features in both the Bayesian neu-
ral network (BNN) and piecewise exponential (PEM) mod-
els. The Bayesian neural network we developed utilizes
sparsity-inducing horseshoe priors [Carvalho, Polson, and
Scott 2010] on the weights and biases, which has been
shown to improve model performance [Bhadra et al. 2019].
Interpretation: In addition to being competitive with black-
box methods in terms of prediction accuracy, our model, as
a generalized linear survival regression model, is easily in-
terpretable. To be specific, our model is a generalized lin-
ear survival model where the coefficients vary. The value
of each coefficient is the logarithm of a hazard ratio corre-
sponding to the effect of a given feature, for a given data co-
hort, for a given time period. Log hazards greater than zero
correspond to increased probability of event (readmission or
death). Here, we provide select portions of the ground-truth
global interpretation of the model, found by simply reading
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Figure 4: Mean baseline log-hazards by week for each
episode interaction cohort defined within the model.
Larger log-hazards corresponds to more readmission risk.
Personalized values of «,, specific to each episode are found
by mapping an episode into its cohort grouping.

off the values of the regression coefficients. Please see the
Supplemental Materials for a more-complete accounting of
the model. This type of exposition is impossible with black-
box models without relying on unreliable approximations.
Time-dependent risk factors: The model segments the
data based on covariability and assigns for each predictor
a cohort-level effect within each time interval. The effects
within the model are hazard ratios, which describe the in-
stantaneous relative risk associated with a predictor relative
to a baseline. In most cases, the baseline refers to a typical or
normal value of a variable. Membership to cohorts also itself
is associated with a baseline risk — baseline log-hazards are
presented in Fig. 4 for the 12480 episode cohort types de-
fined within the decomposition for the parameter vector c,,
in Eq. 2. Larger values of the hazard imply higher probabil-
ity of event (readmission or death). There exists variability
in the hazards across cohorts (rows), though the most obvi-
ous change is in time. Generally, the hazard is greatest in
the first week after discharge. This finding implies that pa-
tients are more vulnerable in the first week than afterwards
— keeping a patient out of the hospital within the first week
reduces the overall risk that they will die or be readmitted.
For this reason, we will focus on understanding the model’s
predictions of the first-week risk.

The 40 most-impactful first-week factors are shown in
Fig. 5, where the parameters have been decomposed in or-
der to control for racial biases. The most-predictive single
feature was length of stay. Lengths of stay less than a full
day had a relative log hazard ratio of 0.97 (95% CI: 0.96 —
0.98) (note LOS<1 day was the reference group and so is
the converse of LOS > 1 days shown in Fig. 5). Having an
acute primary diagnosis code, at least one inpatient stay in
the previous quarter (lagQO, within 90 days of admit), and
discharge against medical advice were also strong predic-
tors associated with increased risk of readmission or death.
Patients who received skilled nursing care in the quarter pre-
ceding an inpatient episode, who had a Resource Utilization
Group (RUG) Activities of Daily Living (ADL) score of at
least 6.125 tended to have a lower risk of readmission in the
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Figure 5: The 40 predictors with the largest absolute co-
efficients in the first week (through day 7) after readmis-
sion. All predictors are binary and all parameters are ad-
ditive log hazard ratios. Higher (red) corresponds to larger
hazards and greater readmission risk.

first week than otherwise, however, the risk increased for
quarter-lagged ADL scores of at least 13.5.

Discharge placement effects: In Fig. 6, we show the
cohort-wise causally-adjusted mean local average treatment
effects of discharge to each of the given care settings as well
as the local standard deviation in the effect. Focusing on the
effect of discharging to skilled nursing care, the effects were
greatest for episodes graded by DRG code as having either
a complication or comorbidity (CC) or a major complica-
tion or comorbidity (MCC). In particular, CC/MCC episodes
with a major diagnostic code of 2 (Diseases and Disorders of
the Eye), 14 (Pregnancy, Childbirth And Puerperium), and
22 (Burns) have the greatest response to discharge to skilled
nursing.

Posthoc-xAI (SHAP) misleads: Knowing what the model
is doing in exact terms, let us see how posthoc-xAl thinks the
model is working. In Fig. 7 we display the most important
model features as determined by magnitude of global SHAP
values in the prediction of readmission or death within the
first 30 days. SHAP is computationally costly to approxi-
mate — the details of our SHAP computation are available in
the Supplemental Materials. The four most-influential fea-
tures according to the explainer are specific CCS classes
of treatments and diagnoses in the recent quarterly history.
Comparing these results to the parameter values of Fig. 5,
it is evident that the feature sets disagree. Nor do the val-
ues in Fig. 7 align with parameter values for later weeks
(see Supplemental Materials). This finding is unsurprising;
SHAP has been consistently shown to fail to recover ground-
truth interpretations [Kumar et al. 2020, Bordt et al. 2022],
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Figure 6: First-week effects of discharge placement: Mean
(left) and standard deviation (right) by cohort (row) of the
five placement interventions assessed, in increasing order of
implied acuity. Effect is difference in log-hazard relative to
a normal discharge (home).
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Figure 7: Shapley values: Top 40 absolute feature weights
for prediction of 30 day readmission using our survival
model, where we have the ground truth explanation (See
Figs 3-6, and the supplement for how the features actually
are incorporated into the model. SHAP fails to identify the
features a model is using whenever features are correlated.

in problems where the predictors are correlated. SHAP fun-
damentally does not answer the question of what a given
model is doing in order to reach a prediction. Furthermore,
feature importance is not grounded in any relevant units and
also does not speak to relevant interactions that are cap-
tured in a model. We criticize SHAP because it is one of the
most popular posthoc-xAl techniques, however, similar ar-
guments hold for other techniques [Rudin 2019, Babic et al.
2021, Zhou et al. 2022].

Discussion

We presented a method for mimicking ReLU-nets within in-
herently interpretable multilevel Bayesian models. We ap-
plied this methodology to the prediction of hospital readmis-
sions or death after discharge, and to the causal inference of
the effects of discharge assignments.

Accuracy without blackboxes: We demonstrated how we
were able to perform like blackboxes, without sacrificing in-
terpretability. We accomplished this feat through two classes
of methods: First, our novel modeling framework allowed
us some fine-grain resolution in looking at the differential
effects of the predictors in data subgroups. Additionally, it
helped regularize the inference of local average treatment
effects for choosing discharge placement. Second, we per-
formed layers of feature engineering. The first layer was an
extraction of medically-relevant information from the raw
billing that gave us attributes such as chronic diseases, co-
morbidities, and ADL function. Second, we reduced noise
in the raw coding by mapping to the clinically-relevant CCS
system. These two steps were sufficient for our logistic re-
gression model to match the performance of an XGBoost
model in the literature based on the same dataset [MacKay
et al. 2021]. Finally, we performed feature quantization
based on the per-feature statistics. Quantization led to a big
performance increase in logistic regression and also in the
neural network for a given model size. We took these lessons
and used them in defining our interpretable survival model.
Posthoc xAl is inherently untrustworthy: Our model, be-
ing inherently interpretable, admits an unequivocal ground-
truth explanation. Hence, it is a good test case for testing
the accuracy of posthoc explainers. We tested SHAP on our
model; it failed in coming close to the ground-truth. This
finding is consistent with other literature that has looked crit-
ically at SHAP and other xAl tools.

While posthoc-xAl does not make blackboxes inter-

pretable, interpretability is not always unnecessary. Quan-
tifying sample average treatment effects and making predic-
tions does not require interpretable modeling [Hill 2011],
or even necessarily models at all [Ding and Miratrix 2017].
Blackbox methods offer good performance with minimal
thoughtfulness. For these reasons, blackbox methods remain
inherently useful — so long as one does not whitewash them
with false explainability.
Limitations: Our modeling approach has downsides. Nu-
merical stability generally requires the use of double preci-
sion floating point. The lattice-based parameter decomposi-
tion is memory-intensive which in some applications may
severely limit expressivity.
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Supplementary Methods
Medicare data preprocessing

Here we describe some details on the choices we made
in preprocessing that will help make our work repro-
ducible. Kyle Barron’s https://kylebarron.dev/medicare-
documentation/Medicare Documentation repository of
Medicare data documenation is an excellent resource for
acquainting oneself with this standardized dataset. Our
first steps in processing the CMS LDS were to merge the
files, originally organized by year, into long tables for each
claim type. In the process, we renamed pre-2011 columns
in the dataset to match 2011+ plus columns where-ever they
differed. We will refer to the dataset using 2011 and beyond
column names.

Episode Grouping The CMS LDS consists of records or-
ganized into claims. Multiple claims can constitute a single
period or episode of service. We determined episodes of the
following types:

1. inpatient (inp)

2. skilled nursing facility (snf)
3. hospice (hosp)

4. outpatient (out, car)

For determining episodes, we grouped claims of each of the
given types by person, and sorted by either the admission
date (for inp, snf, hosp), or the claim through-date for (out,
car).

Then for inp, snf, hosp, we merged successive claims
into running episodes if they overlapped temporally, if the
provider was the same and the intermediate discharge code
indicates that the individual was not otherwise discharged
home in between (we allow for distinct episodes with zero
days of wait if a patient is discharged home and returns on
the same day).

For out and car, we did the same merging with all claim
types together, relaxing the need for the provider to match in
an episode. Then we filtered for out/car episodes that did not
overlap with inp, snf, hosp episodes — we determined these
to be true outpatient episodes.

Then, for out and inp episodes, we determined if they cor-
responded to emergency department visits by looking for
corresponding revenue center codes.

Model Specification
Parameter Decomposition Max order
a MDC x Hx x CC/MCC 2
J6] race 1
¥ MDC x Hx x CC/MCC 2
v MDC x Hx x CC/MCC 2

Table 2: Specific decompositions used per parameter to
define cohorts, where major diagnostic category (MDC)
is of size 26, history (Hx) is of size 2°, corresponding to
low/high in each of the five dimensions, CC/MCC is of size
3, and race is of size 5.

The specific decompositions that we used for each of the
model terms are displayed in Fig. 2. For the missing param-
eter &, the results in this manuscript are all determined using
£=0.

The python package
with demonstration available at
github:mederrata/bayesianquilts contains
utilities for managing decompositions such as these.

We used a regularized horseshoe prior in order to encour-
age (3 to be sparse. Specifically, we applied an independent
horseshoe prior to this parameter within every model cohort.

The individual components of each of the parameter de-
compositions were all modeled using Gaussian weakly-
informative priors (with a default scale of 5 for the zero-
order terms in the expansion). We helped encourage shrink-
age by having the scale of these priors decay for higher order
terms in the decomposition. For the results in the paper, we
used a decay factor of 0.1 per each order.

bayesianquilts,

Training We utilize TFP’s ADVI routines, which utilize
stochastic sampling in computation of the ELBO. For this
reason, it is not uncommon for specific parameter combi-
nations to be in highly improbable locations — which can
trigger underflows. To avoid instabilities, re adjust the like-
lihood on a per-observation level, first computing the mini-
mum finite value of the log likelihood and then setting any
divergent values to the minimum finite value minus a fixed
offset of 100. We use the soft-plus function as a default
bijector for any parameters that are supposed to be non-
negative.

SHAP KernelSHAP, the general all-purpose model-
agnostic implementation of SHAP, is very resource inten-
sive, so we had to tune it in order to run it. First, we used
the regression-based version of KernelSHAP, found in the
python package shapreg [Covert and Lee 2021], which is
not as resource intensive.

Second, although we had a very powerful computational
resource at our disposal (Pittsburgh Supercomputer Center
Bridges 2-Al with 512GB RAM), we had to restrict the in-
put data size to Sk random training examples. Otherwise, we
found that the system would run out of memory, causing the
application to segmentation fault.

Finally, in order to get around an error involving a
singular matrix, we regularized the linear algebra problem
embedded within the algorithm, adding a fixed small
constant of 10~% to the diagonal of the linear transforma-
tion matrix (see https:/github.com/iancovert/shapley-
regression/compare/master...joshchang:shapley-
regression:mederrata) for the exact modification made.

We were able to run shapref with n_samples=2400
and batch_size=24 on our resource in approx-
imately 5 hours. Due to the memory requirement
issues with our large dataset, we are not able to
scale this result to more data. SHAP is known to
be computationally expensive, particularly for large
datasets and a large number of features (see github is-
sues  https://github.com/slundberg/shap/issues/10531053
https://github.com/slundberg/shap/issues/14951495),  and
its very computation is inherently based on approximations.



We believe that our computation of SHAP for our model is
a reasonable representation of how well-approximated it is
in practice, on a real problem and on a real dataset with a
large number of predictors.

Our main point in the main text is a reiteration of the well-
known fact that SHAP feature importance is not guaranteed
to match what a model is doing in practice when the fea-
tures in the training data are correlated — as would be true in
most real-world problems. Examining Fig. 7 in the context
of Fig. S6, one sees that the most-important SHAP features
are not themselves very important in the model.

Supplementary Results

Here are results omitted from the main text for space con-
straints.

History representation

We utilized sparse probabilistic matrix factorization in order
to obtain a low-dimension representation of personal medi-
cal history for the year prior to each episode. The encodings
given by the model (Fig. S1 is an expanded version of Fig. 3
from the main text) specify linear combinations of the origi-
nal data features that define a representation of an episode’s
history. The representations then can be constituted into a
predictive distribution for the original features by transfor-
mation against a decoding matrix (Fig. S2). Note that this
method finds a subset of the input features that can be used
to predict the value of all features.

Random slopes Although we do not use this terminology
in the main text, in the language of hierarchical mixed effects
models the parameters (3, £ in the model are random slopes.
In the main text we presented the week 1 slopes in Fig. 5. In
Fig. S3, we present the components of 3 of the largest mag-
nitudes, across all time intervals. As we noted in the main
text, length of stay being at least 1 day, or conversely, be-
ing less than a full day, was the most impact predictor of
early readmission. However, the effect disappears after one
week. Long length of stay (greater than 30 days) appeared
to follow the same trend, with those having a length of stay
of at least a month having a lower readmission risk in the
first week after discharge, but not reduced risk after the first
week. Generally, the magnitude of the slopes tended to in-
crease over time, with a few exceptions.

Random intercepts The parameter @ from Eq. 2 is spe-
cific to each cohort in the model — it is a random intercept
in hierarchical mixed effects modeling terminology. We pre-
sented the posterior mean for this parameter in Fig. 4, inter-
preting this quantity as a cohort-specific baseline survival.

Causal inference In our model we adjust for treatment
selection bias by incorporating estimates of the treatment
probabilities as covariates. The ordinal logistic regression
intercepts are provided in Fig. S4.

The first five components in the parameter ~ adjust for
the selection bias present in claims. We present our cohort-
specific estimates of ~ in Fig. S5. We present the full time-
course of discharge placement effects in Fig. S6. Largely, the
discharge placement affects appear to strengthen from week

Tx: CCS1-8 lagQ2
Tx: CCS1-8 lagQ3
Tx: CCS1-13 lagQ1
Tx: CC81-13 lagQ3
Tx: CCS1-8 lagQ1
Tx: CCS1-8 lagQ0
Tx: CCS1-13 lagQ0
Tx: CCS1-13 lagQ2
Tx: CCS1-2 lagQ0
Dx: CCS1-11 lagQ1
Dx: CCS1-11 lagQ2
Dx: CCS1-11 lagQ0
Dx: CCS1-11 lagQ3
OUTPATIENT_ER_EPISODES lagQ0
OUTPATIENT_ER_EPISODES lagQ3
OUTPATIENT_ER_EPISODES lagQ1
OUTPATIENT_ER_EPISODES lagQ2
Dx: CCS1-2 lagQ3
Dx: CCS1-2 lagQ2
Dx: CCS1-2 lagQ1
out episodes lagQ3
out episodes lagQ0
out episodes lagQ2
out episodes lagQ1
Dx: CCS1-2 lagQ0
Tx: CCS1-4 lagQ3
Tx: CCS1-3 lagQ1
Tx: CCS1-4 lagQ1
Tx: CC81-20 lagQ1
Tx: CCS81-4 lagQ2
Tx: CC81-20 lagQ2
Dx: CCS1-11agQ0
Tx: CC81-20 lagQ3
Tx: CC81-20 lagQ0
Tx: CC81-51agQ0
Tx: CCS1-15 lagQ0
Tx: CCS1-17 lagQ3
Tx: CCS1-4 lagQ0
Dx: CCS1-4 lagQ0
Tx: CCS1-17 lagQ1
Dx: CCS1-15 lagQ0
Dx: CCS1-16 lagQo |
Tx: CCS1-6 lagQ0
Dx: CCS1-9 lagQ0
Dx: CCS1-7 lagQ0
Tx: CC81-17 lagQ0
Dx: CCS1-8 lagQ0
Tx: CCS1-9 lagQ0
Tx: CC$1-7 lagQO - 0.40
Tx: CCS1-16 lagQ0 .
Tx: CC81-3 lagQ1
Tx: CCS1-6 lagQ1
INP_ADMITS lagQ1
Tx: CCS1-9 lagQ2
Tx: CCS1-9 lagQ1 0.08
INP_ADMITS lagQ2
Tx: CCS1-9 lagQ3
Tx: CC81-16 lagQ3
Tx: CC81-7 lagQ3

Tx: CCS1-16 lagQ1 0.06
Tx: CC81-16 lagQ2
INP_ER_ADMITS lagQ2
Tx: CCS1-7 lagQ2
INP_ER_ADMITS lagQ3
INP_ER_ADMITS lagQ1
Tx CCS1-7 lagQ1 0.04

Dx: CCS1-9 lagQ3

Dx: CCS1-9 lagQ2

Dx: CCS1-9 lagQ1

Dx: CCS1-8 lagQ3

Dx: CCS1-8 lagQ2 0.02

Dx: CCS1-8 lagQ1

Dx: CCS1-7 lagQ3

Dx: CCS1-7 lagQ2

Dx: CCS1-7 lagQ1

Tx: CC81-10 lagQ2 0.00

Tx: CC81-10 lagQ3

Tx: CCS1-15 lagQ1

Tx: CC81-15 lagQ3

Tx: CCS1-10 lagQ1

Tx: CCS1-10 lagQ0

Dx: CCS1-1 lagQ2

Dx: CCS1-1lagQ3

Dx: CCS1-1 lagQ1

Dx: CCS1-1 lagQ0

Dx: CCS1-3 lagQ0
Dx: CCS1-4 lagQ3
Dx: CCS1-4 lagQ2
Dx: CCS1-4 lagQ1
Dx: CCS1-12 lagQ3
Dx: CCS1-12 lagQ2
Dx: CCS1-12 lagQ1
Dx: CCS1-12 lagQ0
Dx: CCS1-10 lagQ2
Dx: CCS1-10 lagQ3
Dx: CCS1-10 lagQ1
Dx: CCS1-3 lagQ3
Dx: CCS1-3 lagQ2
Dx: CCS1-3 lagQ1
Dx: CCS1-10 lagQ0
Dx: CCS1-6 lagQ0
Tx: CC81-3 lagQ3
Tx: CC81-14 lagQ2
Tx: CC81-1 lagQ2
Tx: CC81-14 lagQ3
Tx: CCS1-11agQ3
Tx: CCS1-14 lagQ1
Tx: CCS1-1lagQ1
Tx: CCS1-1 lagQ0
Dx: CCS1-6 lagQ3
Dx: CCS1-16 lagQ3
Dx: CCS1-6 lagQ2
Dx: CCS1-16 lagQ2
Dx: CCS1-6 lagQ1
Dx: CCS1-16 lagQ1
Tx: CC81-14 lagQ0
Dx: CCS1-16 lagQ0
Dx: CCS1-51agQ3
Dx: CCS1-5lagQ0
Dx: CCS1-5 lagQ2
Dx: CCS1-5 lagQ1
Dx: CCS1-13 lagQ2
Dx: CCS1-13 lagQ3
Dx: CCS1-13 lagQ1
Dx: CCS1-13 lagQ0

dim 0 dim 1 dim 2 dim 3 dim 4

Figure S1: Extended version of Fig. 3 with up to 25 features
per dimension



Tx: CCS1-2 lagQ0

Tx: CCS1-9 lagQ0

Dx: CCS1-11 lagQ3

Dx: CCS1-11 lagQ2

INP_ADMITS lagQ0

Dx: CCS1-9 lagQ2

Dx: CCS1-9 lagQ3

Dx: CCS1-11 lagQ1

Dx: CCS1-9 lagQ1

Dx: CCS1-9 lagQ0

Dx: CCS1-4 lagQ0d

Dx: CCS1-11 lagQ0

Tx: CCS1-8 lagQ0
OUTPATIENT_ER_EPISODES lagQ3
OUTPATIENT_ER_EPISODES lagQ2
OUTPATIENT_ER_EPISODES lagQ1
Dx: CCS1-2 lagQ1

Dx: CCS1-2 lagQ3
OUTPATIENT_ER_EPISODES lagQ0
Dx: CCS1-2 lagQ0

Dx: CCS1-2 lagQ2

out episodes lagQ2
out episodes lagQ3
out episodes lagQ1
out episodes lagQ0

Dx: CCS1-1 lagQ1

Tx: CCS1-8 lagQ0

Dx: CCS1-12 lagQ0

Tx: CCS1-5 lagQ0

Tx: CC81-17 lagQ1

Tx: CCS1-20 lagQ0

Tx: CCS1-15 lagQ0

Dx: CCS1-10 lagQ0 I

Dx: CCS1-14 lagQ0

Dx: CCS1-6 lagQ0
INP_ADMITS lagQ0
INP_ER_ADMITS lagQ0
Dx: CCS1-3 lagQ0

Dx: CCS1-16 lagQ0

Dx: CCS1-1 lagQ0

Tx: CCS1-6 lagQ0

Tx: CCS1-18 lagQ0

Dx: CCS1-4 lagQ0

Tx: CCS1-9 lagQo

Dx: CCS1-9 lagQ0

Tx: CCS1-7 lagQ0

Dx: CCS1-7 lagQ0d

Dx: CCS1-8 lagQ0

Tx: CCS81-17 lagQ0

Tx: CCS1-16 lagQo

Tx: CCS1-9 lagQ2

Tx: CCS1-16 lagQ2 14

Tx: CCS1-7 lagQ1
INP_ER_ADMITS lagQ0
Tx: CCS1-7 lagQ3

Tx: CCS1-9 lagQ1
INP_ER_ADMITS lagQ3
Tx: CC81-16 lagQ3

Dx: CCS1-8 lagQ0 I 1.0
INP_ADMITS lagQ2

Tx: CCS1-16 lagQ1

Dx: CCS1-7 lagQ0
INP_ER_ADMITS lagQ2
Dx: CCS1-9 lagQ3
INP_ADMITS lagQ3
INP_ADMITS lagQ1 0.6

Dx: CCS1-9 lagQ1

Dx: CCS1-9 lagQ2
INP_ER_ADMITS lagQ1 04
Dx: CCS1-8 lagQ2 .

Dx: CCS1-8 lagQ1

Dx: CCS1-8 lagQ3

Dx: CCS1-7 lagQ3

Dx: CCS1-7 lagQ2

Dx: CCS1-7 lagQ1

Tx: CC81-15 lagQ0 0.0

Dx: CCS1-6 lagQ1 .

Dx: CCS1-6 lagQ3
INP_ER_ADMITS lagQ0
Dx: CCS1-1 lagQ0

Dx: CCS1-1 lagQ1

Tx: CCS1-10 lagQ0

Dx: CCS1-4 lagQ2

0.8

0.2

Dx: CCS1-1 lagQ3
Dx: CCS1-4 lagQ1
Dx: CCS1-12 1agQ3
Dx: CCS1-1 lagQ2
Dx: CCS1-4 lagQ0
Dx: CCS1-12 lagQ2
Dx: CCS1-12 lagQ0
Dx: CCS1-12 lagQ1
Dx: CCS1-4 lagQ3
Dx: CCS1-10 lagQ3
Dx: CCS1-10 lagQ2
Dx: CCS1-3 lagQ0
Dx: CCS1-10 lagQ1
Dx: CCS1-3 lagQ2
Dx: CCS1-3 lagQ1
Dx: CCS1-10 lagQ0
Dx: CCS1-3 lagQ3
Tx: CCS1-14 lagQ3
OUTPATIENT_ER_EPISODES lagQ0
Dx: CCS1-1 lagQ2
Tx: CCS1-14 lagQ2
Tx: CCS$1-17 lagQ0 |
Tx: CCS1-14 lagQ1
INP_ADMITS lagQ0
Dx: CCS1-16 lagQ2
Dx: CCS1-16 lagQ1
Tx: CCS1-1lagQ0
Dx: CCS1-16 lagQ3
Dx: CCS1-6 lagQ3
Dx: CCS1-6 lagQ0
Dx: CCS1-6 lagQ2
Tx: CCS1-14 lagQO
Dx: CCS1-16 lagQ0
Dx: CCS1-6 lagQ1
Dx: CCS1-5 lagQ2
Dx: CCS1-5 lagQ3
Dx: CCS1-5 lagQ1
Dx: CCS1-5 lagQ0

Dx: CCS1-13 lagQ3
Dx: CCS1-13 lagQ1
Dx: CCS1-13 lagQ2
Dx: CCS1-13 lagQ0

dim 0 dim 1 dim 2 dim 3 dim4

Figure S2: Decoding matrix corresponding to the encod-
ing model of Fig. S1 showing up 25 features per dimension

1 to weeks 2/3 before weakening from week four onwards.
The discharge placement bias effects have more cohort-level
variability after the first week. In Fig. S7, we zoom in on
the effects for the cohorts that benefit the most from the
discharge placement interventions. A key advantage of this
form of modeling against even the computationally inter-
pretable ReLU-nets is the ability to perform mesoscopic
cohort-level inference and interpretation. Cohort-level infor-
mation facilitates making a model actionable since actions
can be applied to subgroups all at once.
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Figure S3: The 50 most influential regressors 3 (posterior mean, standard deviation) tracked through all time intervals. A
more-comprehensive version of this figure can be found in our other supplemental file.
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Figure S4: Cohort-wise ordinal intercept terms v for the
prediction of the distribution of discharge assignments.
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Figure S5: Discharge assignment adjustment terms corresponding to first five terms of ~ (posterior mean, standard

deviation) in terms of log hazard ratio under the log-additive effects model of Eq. 2
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Figure S6: Discharge placement effects ~ (posterior mean, standard deviation) in terms of log hazard ratio under the log-

additive effects model of Eq. 2
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Figure S7: Discharge placement effects for select cohorts with the largest mean discharge placement effects.



