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Abstract

Wild rhinos are threatened with extinction as a result of hu-
man activities, in particular, poaching. Monitoring rhinos in
the wild has proven difficult, which limits the effectiveness of
conservation efforts. The presence of rhino middens, which
are communal defecation sites, in a landscape can give in-
formation on a rhino population inhabiting the area. Despite
the potential insights that can be gained into rhino popula-
tion distributions and habitat use, rhino middens have yet to
be mapped on large scales. We build classifiers to detect mid-
dens from remotely sensed thermal and RGB imagery using
computer vision and active learning techniques. We present
initial results, training and testing our classifiers on a novel
dataset, resulting in a maximum accuracy of 0.76± 0.05 for
the passive fused model. The long-term goal of this work is to
detect rhino middens with as few labeled images as possible
to save ecologists time.

Introduction
Rhinos are one of the most targeted animals by illegal poach-
ers in Africa; on average at least one rhino is killed every
day, putting the species at risk of extinction (SaveTheR-
hino 2022). The vast majority of African rhino poaching
deaths occur in South Africa, where the rhino population in
the country’s largest national park, Kruger, has declined by
59% since 2013 (SaveTheRhino 2022). Understanding the
distribution of rhino populations and how their habitat use
changes in response to poaching is crucial to implement-
ing effective conservation measures (Johnson and Gilling-
ham 2005). Rhinos are elusive as well as dangerous to ob-
serve directly (Linklater, Mayer, and Swaisgood 2013), but
their populations can be tracked by locating their commu-
nal feces piles, called middens (see Figure 1). These com-
munal middens are used for social communication through
smell by white and black rhinos (Marneweck, Jürgens, and
Shrader 2017). The importance of middens in rhino popu-
lations suggests they likely influence and reflect movement
and distribution patterns. A greater understanding of midden
distributions will therefore give insights into rhino territorial
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Figure 1: A white rhino midden next to a road in iMfolozi
(Marneweck 2013)

ranges and habitat use, which can then inform anti-poaching
strategies and conservation efforts. Detecting rhino popu-
lations in this way is also more practically efficient, as the
static middens require less frequent re-mapping than meth-
ods identifying individual animals. Moreover, it is far less
invasive than placing GPS trackers on rhinos.

The Davies lab in Harvard’s Department of Organismic
and Evolutionary Biology has captured thermal and RGB
imagery of a site in Kruger National Park using a drone.
Bondi, Ressijac, and Boucher 2021 made a first attempt
at detecting rhino middens in this imagery by exploiting
the fact that rhino middens are often warm relative to the
surrounding ground. Following this principle, they used a
thresholding methodology to try to identify images that are
more likely to contain middens. We extend this work by us-
ing deep learning to more robustly identify rhino middens
in this same remotely sensed, unpublished dataset. Deep
learning has often been used to analyze large volumes of
remotely sensed data, e.g. for wildfires (Bouguettaya et al.
2022). The key idea behind deep learning is that repeated
simple, non-linear transformations of an input allow for ab-
stract and complex representations of features of the input
that are learned, not assigned. In the case of convolutional
neural networks, alternating sequences of convolutional and
pooling layers form filters that extract features in an im-
age while constraining the dimensionality of the features to
be computationally tractable. These feature-extracting lay-
ers are often then connected to one or more fully-connected
layers to perform the actual image classification. The whole



network is trainable using backpropagation.
Several studies have fused thermal and RGB data in an

attempt to create better-performing deep learning models.
Alexander et al. 2022 utilized thermal and RGB fusion in
a deep learning method for detecting cracks in civil infras-
tructure. They found that their fused model outperformed
an RGB-only model. Bakalos et al. 2021 fed fused thermal
and RGB imagery along with channel state information from
WiFi into a bidirectional LSTM to detect abnormal activity
in critical water infrastructure. Their combination of three
data modalities outperformed fused thermal and RGB im-
agery or channel state information alone. Speth et al. 2022
harnessed the power of fused thermal and RGB imagery col-
lected from drones to detect and locate people in disaster
zones. They tested two methods for fusion. In the first, they
performed late fusion, in which separate models are trained
for the different modalities and the predictions are merged
at the end. In the second, they used a neural network ar-
chitecture that accepts 4 channels in order to train a single
model on the fused data, which they call early fusion. They
obtained better performance for the early fusion model than
for the late fusion model.

Active learning, as opposed to passive deep learning, is
a distinct machine learning paradigm that seeks to achieve
greater accuracy with fewer labeled training instances by al-
lowing a machine learning algorithm to choose the training
data from which it learns (Settles 2009). Active learning al-
gorithms are generally distinguished by their query strategy,
the method they use to evaluate how informative a given
unlabeled sample is (Settles 2009). Some classic examples
include the uncertainty in the label for a sample (Lewis
and Gale 1994), as measured through probabilities or en-
tropy, the disagreement between a committee of models on a
certain sample, called Query-By-Committee (Seung, Opper,
and Sompolinsky 1992), or by choosing the sample to la-
bel that will minimize the model’s estimated generalization
error (Roy and McCallum 2001). Active learning has been
successfully applied to image classification tasks to avoid
having to hand-label very large image datasets (Li and Guo
2013), including in remote sensing applications (Tuia et al.
2011) and for multi-spectral imagery (Haut et al. 2018). We
compare the performance of passive and active deep learn-
ing methods for detecting rhino middens in thermal, RGB,
and fused imagery.

Data Collection
The remote sensing data used for this project was collected
by a UAV flown over a roughly 2 km x 2 km site in Kruger
National Park back in January 2020. A Sony A6000 cam-
era (24 mp) and a FLIR Tau-2 thermal camera (327,680 mp)
were used to take images as a DJI M600 multicopter flew
at an altitude of 100 m at a speed of 8 m/s over the region
of study. The thermal infrared images taken were converted
into false-color images with a fourth temperature band us-
ing ThermoViewer software and an automatic color scale.
The imagery was rectified and mosaicked with the Terra-
solid software suite. The thermal imagery was rectified and
mosaicked at a resolution of 0.05 m and the RGB imagery at
a resolution of 0.5 m (Bondi, Ressijac, and Boucher 2021).

Figure 2: Thermal (left) and RGB (right) orthomosaics

Data Engineering
Several data engineering steps were necessary to create the
datasets we ultimately used to train and test our models. It
was first necessary to crop the background around the pho-
tographed region to ensure that the thermal and RGB ortho-
mosaics covered the same land area in meters. Next, we per-
formed additional cropping to remove as many background
rows and columns as possible, with the same removal oper-
ations being done to both orthomosaics to preserve the ge-
ographic correspondence between them. Doing so, we ob-
tained the orthomosaics shown in Figure 2. We then added
back the necessary number of background rows and columns
to ensure that an integral number of images could be cropped
from the orthomosaics without cutting off any pixels given
our chosen interval of 20 m (40 pixels for thermal and 400
for RGB) and stride of 5 m (10 pixels for thermal and 100
for RGB).

We were given the x and y coordinates of 79 rhino mid-
dens in the region of interest identified by experts in the
field. We mapped these middens onto the thermal orthomo-
saic, yielding a 2D-matrix of the same size. Each value in
the matrix was assigned to be 1 if the corresponding pixel in
the thermal orthomosaic was the center of a midden and 0
otherwise. This midden matrix was cropped simultaneously
with the thermal orthomosaic such that each individual im-
age had a corresponding midden matrix. Each of these im-
ages was assigned the label 0 if its midden matrix had all
zeros and otherwise was assigned the label 1. By construc-
tion, the cropping of the RGB orthomosaic yielded the same
number of individual images, each of which corresponded
to one of the previously labeled thermal images. Thus, we
labeled each RGB image with 0 (1) if its corresponding ther-
mal image had the label 0 (1). The initial cropping procedure
yielded 132 images with middens and 14,316 empty images.
We then removed any empty images with all zeros, leaving
10,781 empty images, which means that our dataset contains
10,913 images, 1.21% of which have a midden. In order to
prepare the images to be fed into a pretrained VGG16 model,
we converted all of them to PNGs with a DPI of 60.7 so that
the arrays corresponding to the images would be of shape
(224,224,3). The dataset of fused images was created by us-
ing the blend function in the PIL class with an alpha value
of 0.5 to blend the 10,913 pairs of thermal and RGB images.
This particular fusion method was selected so that the re-



sulting fused images would be in a format compatible with
the VGG16 architecture. Each of the fused images was then
labeled according to the pair of images from which it was
generated. These were then converted back into arrays as
was done for the thermal and RGB images.

Computer Vision Methodology
Given the rarity of midden images in our dataset, we em-
ployed transfer learning with a VGG16 model pretrained on
the ImageNet dataset. VGG16 was selected as it is powerful
but still quite fast to train, and it has been used previously in
remote sensing applications (Bouguettaya et al. 2022). We
froze all the parameters in the model and recreated the clas-
sifier to have three sets of linear, ReLU, and dropout layers
with the linear layers having 512, 256, and 128 out features,
respectively. We added a final linear layer with a single out
feature before concluding the architecture with a sigmoid
function so that the output of our model would represent the
probability that an image contains a midden. All the param-
eters in our classifier were trainable. We used a batch size of
16, the Binary Cross Entropy loss function in PyTorch along
with an Adam optimizer with a learning rate of 0.0001. We
performed several transformations on the images before they
were fed into the neural network. First, we subtracted the
minimum pixel value of each image such that each image
had a minimum of 0. We then divided each image by its max-
imum pixel value such that each image had a maximum of 1.
Next, we normalized the pixel values so that the three bands
would have means of 0.485, 0.456, and 0.406, respectively
and standard deviations of 0.229, 0.224, and 0.225, respec-
tively. Finally, we reshaped each image from (224,224,3) to
(3,224,224).

Preliminary Passive Learning Results
Our passive learning models began with all the data labeled.
We split this labeled data into training and testing groups as
follows. First, we added 80% of the midden images to the
training set and left 20% for the test set. We added the same
number of empty images to the test set, yielding a balanced
test set of 52 images. Of the remaining empty images, we
took for training the same number of images as there were
midden images in the training set so that our training set was
also balanced. We performed 5 trials for the thermal, RGB,
and fused models, and each trial had a different assignment
of images to the training and test sets. For each trial, we
trained the models for 20 epochs and recorded the accuracy
on the test set at the end of each epoch as shown in Figure
3 for the thermal model, Figure 4 for the RGB model, and
Figure 5 for the fused model. We used a threshold of 0.5 for
classification. We also report the mean and standard devia-
tion of the accuracy, precision, recall, and F1-score across
the 5 trials at the end of the 20 epochs in Table 1, where the
F1-score is the harmonic mean of the precision and recall.
We observe that the fused model achieves the best perfor-
mance on all metrics, outperforming the individual thermal
and RGB models and pointing to the advantages of exploit-
ing multimodality in image classification.

Figure 3: Accuracy for the passive thermal model across 5
trials when training for 20 epochs

Figure 4: Accuracy for the passive RGB model across 5 tri-
als when training for 20 epochs

Figure 5: Accuracy for the passive fused model across 5 tri-
als when training for 20 epochs



Thermal RGB Fused
Accuracy 0.67± 0.06 0.64± 0.05 0.76± 0.05
Precision 0.69± 0.09 0.64± 0.04 0.77± 0.05

Recall 0.64± 0.06 0.64± 0.11 0.75± 0.10
F1-score 0.66± 0.06 0.64± 0.07 0.75± 0.06

Table 1: Passive learning statistics

Active Learning Methodology

Training our network in this passive way required 10,000+
images to be labeled. While our ecologist collaborators were
able to provide the midden locations for this site of inter-
est, they would also like to map middens in other sites they
have photographed. Such a problem is infeasible with pas-
sive deep learning techniques, motivating an active learning
strategy. It is not uncommon for unlabeled data to massively
outpace labeling efforts in social impact domains. Active
learning aims to reduce the number of images that need to
be labeled to reach a desired level of performance by only
asking a user to label the images that are most useful to the
model’s learning. From the set of unlabeled images, a small
subset is chosen according to some criteria and sent to an ex-
pert for hand-labeling. This small batch of labeled images is
used to begin training the model. Some criteria is then used
to select the next batch of images to be labeled. This process
continues until some stopping criteria is met, e.g. some bud-
get for hand-labeling is reached. The trained model can then
be run on all of the images to classify the entire dataset.

Our proposed algorithm (see Algorithm 1) uses a selec-
tion criteria specific to our domain. Due to the drastic class
imbalance in our data, we must prioritize feeding the model
balanced batches of images. We sort the raw, single-channel
thermal images by their maximum pixel value, leveraging
the fact that middens often show up as hotspots. Those im-
ages with the highest maximum pixel value, which are the
ones most likely to contain middens, are provided labels.
The model then trains on this labeled set and classifies a
small set of unlabeled images, which have the next high-
est maximum pixel values. Each image is assigned a score,
which is the sum of the model’s prediction and the image’s
maximum pixel value on a normalized 0-1 scale. A subset
of those with the highest score are the next to be labeled.
For active learning we use the same dataset and perform the
same train-test split as for passive learning except that we
do not balance the training set. We report the accuracy of
the system as the number of labeled images increases in Fig-
ure 6. We plan to improve our active learning results by us-
ing the histograms of the images to incorporate more infor-
mation into the querying method than solely the maximum
pixel value of each image.

Algorithm 1: Proposed Algorithm for Active Learning
Input: List A of the normalized maximum pixel values of
the unlabeled training images U with labels L
Variables: Batch size b, number of images to predict on
i

1: while images labeled < labeling budget do
2: Select the i images in U corresponding to the indices

with the maximum values in A
3: Run the thermal model on those images
4: Calculate the scores for each of the images as the sum

of its model output and maximum pixel value
5: Select the b images out of the set of those predicted

on that have the highest score
6: Keep all the midden images in that set, but if less than

half are middens, replace an empty image with one of
the midden images in the list until the set of images
is balanced

7: Append this balanced set of images and labels to the
training loader

8: Remove the indices corresponding to the original b
images from A, U , and L

9: Train the model for 2 epochs on the training loader
10: end while

Figure 6: Accuracy for the thermal active learning model
with up to 240 images labeled

Conclusion
We have curated a novel dataset for rhino monitoring and
presented preliminary results for a deep learning approach
to rhino midden classification. We have also implemented an
active learning methodology unique to our problem domain.
As we do not want to release the locations of where rhinos
are likely to be found, we make our code publicly available
at https://github.com/colliers95/rhino-midden-detection but
keep the dataset private. We also acknowledge that the most
important ways to tackle poaching are through ranger patrols
and education about the lack of medicinal properties of rhino
horn, and we see our system as complementary to the efforts
of local experts.
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