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Abstract

Ubiquitous deployment of IoT sensors marks a defining char-
acteristic of smart buildings, for they constitute the source of
data on building operation, diagnosis, and maintenance. For
machine learning applications in buildings, often the sensor
data is augmented with several other artificial variables or
metadata corresponding to building components including the
occupants. Above datasets are usually organized in the form
of a table with rows and columns, and inherently comprise a
mix of continuous and discrete (nominal, ordinal) features/-
columns, thus are called tabular datasets. A vast majority of
smart building datasets are tabular in nature. Machine learn-
ing algorithms, especially deep neural networks are generally
designed as smooth function approximators, and hence are dif-
ficult to train optimally with tabular data without appropriate
pre-processing. In this work, we analyze the challenges faced
by conventional methods for tabular data pre-processing, and
propose the use of two improved data transformation methods,
namely variational dequantization (for discrete features), and
mode-specific normalization (for continuous features). We
show improved thermal preference classification performance
for two key thermal comfort datasets with the proposed pre-
processing. Since the methods are designed in a generalizable
way to work for any tabular dataset, we envision them to be
an integral part of machine learning algorithm development
pipeline for a plethora of smart building applications.

Introduction
Energy consumption in buildings, both residential and com-
mercial, accounts for approximately 40% of all energy usage
in the U.S., and similar numbers are being reported from
countries around the world. This significant amount of en-
ergy is used to maintain a comfortable, secure, and productive
environment for the occupants. So, it is crucial that the energy
consumption in buildings must be optimized, all the while
maintaining satisfactory levels of occupant comfort, health,
and safety. Recent years have witnessed exponential growth
in machine learning implementation in smart buildings. At
the core of machine learning is data: its continuous avail-
ability, intelligent processing, efficient handling and storage.
Smart buildings are equipped with an array of Internet-of-
Things (IoT) devices that ensure the availability of rich data.
The data is then fed to machine learning algorithms after
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appropriate curation and pre-processing to perform some task
that achieves an objective, be it enhancing energy efficiency
or improving occupant thermal comfort and productivity. For
intelligent machine learning model design, it is crucial that
the data pre-processing is done properly to handle the diverse
data collected in buildings in a unified manner. In this work
we focus on some improved data transformation methods
for one of the key types of data commonly found in smart
buildings, namely tabular data.

Tabular data is defined as data that is structured into rows,
and columns of information. Each row contains the same
number of cells (although some of these cells may be empty),
which is considered a single data sample. Each column in
tabular data represents a variable, a property, or a feature of
the system to which the dataset corresponds to. The columns
in tabular datasets can be continuous, which refers to vari-
ables whose values come from the real number set, and can
be uncountably infinite, or discrete, which refers to variables
that are categorical and can have a countably limited number
of values. Another kind of structured data is graphical data
that encodes the relationship between multiple entities either
in a directed or undirected way. Graph structures are useful
for certain types of problems, such as network optimization
and recommender systems. Some examples for the unstruc-
tured type of data include images that are organized in terms
of pixels, and textual data that is organized as sequences of
characters with no particular pre-defined storage model. As
we will see in the next paragraphs, a large number of smart
building datasets are tabular in nature, which is why we focus
this work to design pre-processing methods specifically for
them. Nevertheless, the proposed methods can also be used
for other data types with minor modifications.

The data obtained in smart buildings can be broadly di-
vided into four classes (Navigant 2017): occupant data, fa-
cility data, enterprise data, and distributed energy resources
(DER) data. Occupant data refers to the data collected from
occupants pertaining to their occupancy, thermal comfort
preferences, energy usage, etc. For instance, to ensure occu-
pants are thermally comfortable in buildings, there is an array
of research (Ngarambe, Yun, and Santamouris 2020; Liu et al.
2019; Chennapragada et al. 2022; Taleghani et al. 2013; Luo
et al. 2018; Chaudhuri et al. 2017) focusing on understand-
ing which parameters affect the thermal preference of an
individual or a group, and design physics-based or machine



learning based predictors to predict them. The data collected
from occupants and their immediate environment include
environmental variables (Ličina et al. 2018; Periyakoil, Das,
and Spanos 2020; Periyakoil et al. 2021) such as standard
effective temperature, air temperature, relative humidity, and
air velocity, occupant specific variables (Liu et al. 2019; Jay-
athissa et al. 2020) such as clothing level, metabolic rate, and
in some cases, physiological signals such as heart rate and
temperatures at different key body points. All of the above
readings can be taken as instantaneous readings for several
subjects, or by performing a field experiment with a set of
subjects over a period of time. In both the cases, the data
is organized into a tabular form, with the above features as
columns and each row representing data at a time stamp for
an occupant. Some of the above features are continuous and
some discrete. Thermal comfort is a key example of smart
building components that prevalently have tabular data (Liu
2018; Das, Schiavon, and Spanos 2021). Other occupant
data, such as the CO2 concentration of the return air (used
to measure occupancy in buildings (Zuraimi et al. 2017)),
infrared radiation changes using PIR sensors (used to reflect
the movement information of objects, and hence detect both
occupancy and presence (Sun, Zhao, and Zou 2020)), and
energy resource consumption data (used to monitor the usage
and encourage energy-efficient behavior by providing incen-
tives (Konstantakopoulos et al. 2019)), are also organized in
the form of tables and hence classified as tabular data.

The second class of data in smart buildings is facility data.
This corresponds to the data obtained primarily from and
for the various mechanical systems present in the building.
The data collected might be used to optimize the operation
of different systems such as the Heating, Ventilation, and
Air Conditioning (HVAC), or to diagnose faults in the sys-
tem for predictive maintenance. For example, for monitor-
ing and opportunistically optimizing HVAC system, the en-
ergy consumption, temperature and humidity in different
zones (Khalilnejad, French, and Abramson 2020) in a build-
ing are collected. For diagnosing faults in the system, param-
eters such as flow-rate for water systems, actuator statuses
(e.g., valve, pump) (Li et al. 2019) etc. are collected. All the
above datasets are tabular in nature since they are readings
that are coming as a stream with a particular frequency from
sensors fitted in various appliances.

The third class is enterprise data, which includes data from
software systems governing a smart building. For example,
data streams from digital twins of a building might contain
synthetic measurements of building parameters (Khajavi et al.
2019). The fourth class is DER data, which comprises of data
corresponding to renewable energy (mostly solar) generation
and consumption measurements (Luthander et al. 2019), oc-
cupant/building energy consumption schedule and patterns
throughout the day (Zhao et al. 2014), and data correspond-
ing to demand response programs (Tang and Wang 2019).
All of the above datasets are tabular in nature. In retrospect,
we realize that a significant number of datasets collected and
utilized by machine learning algorithms in smart buildings
are tabular in nature and demand specialized methods for
pre-processing.

Data pre-processing is a vital step in the machine learn-

ing implementation process since inconsistencies among the
diverse features in a dataset can cause any algorithm to be
suboptimal. Data pre-processing involves a number of opera-
tions, such as data cleaning to get rid of or replace missing
and/or noisy data, data transformation to convert the data to
a common data type as is warranted by the downstream ma-
chine learning model, dimensionality reduction (if needed)
etc. There has been significant advances on data cleaning
and dimentionality reduction operations in existing research
works. However, data transformation, which involves steps
such as normalization, encoding and dequantization etc. has
not received much attention in the machine learning imple-
mentation process especially in applied domains such as
smart buildings. Data transformations steps such as normal-
ization are necessary to scale the features to common limits
(e.g. min-max normalization), and also to model them to
follow a known distribution (e.g. standard/gaussian normal-
ization). At the same time, dequantization of discrete features
is also necessary for models to learn the data distribution
efficiently. Based on our study, we observed that most of
the prior works treat continuous and discrete features alike.
The most common continuous feature transformation step
in existing works are gaussian or min-max normalization.
However, real-life continuous feature distributions comprise
of several inherent modes, and many machine learning al-
gorithms are sensitive to the modes present, in which case,
above normalization methods prove to be sub-optimal. On the
other hand, many prior works do not treat discrete features
differently, and just consider them as a special case of contin-
uous features with values present just at the discrete markers.
In the best case, a few works convert the discrete features to
one-hot vectors, which are again discrete in nature. If we fit
a continuous distribution (using ML models such as neural
networks since they are smooth function approximators) to
these discrete values, the model can learn to achieve high
likelihood by placing large spikes at these discrete values,
while making the likelihood low everywhere else. This is an
unnatural distribution we would like to discourage our model
from overfitting to the discretization.

In this work, we focus on the above challenges for tabular
data, and propose the use of two novel data transformation
methods (the other steps in data pre-processing that precede
data transformation, such as data cleaning are kept the same),
namely mode-based normalization for continuous features,
and uniform and variational dequantization for discrete fea-
tures. Dequantization refers to adding noise to the discrete
variables before they are fed to the machine learning models.
By considering thermal comfort datasets as representative
tabular datasets for smart buildings, we show that using our
proposed methods for data pre-processing leads to significant
improvement in thermal comfort prediction performance as
compared to the state-of-the-art model with conventional data
pre-processing. Needless to say, the proposed methods, being
designed in a generic manner for tabular datasets, extend
seamlessly for use by other smart building tabular datasets.
To the best of our knowledge, we are the first to propose and
conduct an extensive study into the data pre-processing meth-
ods for the most commonly found data in smart buildings, i.e.
tabular data.



Related Works
Since we focus on the data transformation step in the whole
data processing pipeline, we discuss and compare our pro-
posed methods with data transformation methods used in the
previous works. For continuous features, gaussian or min-
max normalization have been the gold standard in previous
works. For instance, authors in (Uğursal and Culp 2013) use
gaussian normalization or z−normalization and apply it to
the subjective response data to scale it uniformly and to bet-
ter determine the overall response trends. In (Zheng, Dai,
and Wang 2019), gaussian normalization is used for mete-
data normalization in design of a dynamic multi-task thermal
comfort prediction model. Min-max normalization has also
been used in (Xiong and Yao 2021) to normalize the data
for use in K-nearest neighbor based thermal model. Another
work that focuses on study of HVAC control strategies us-
ing personal thermal comfort and sensitivity models (Jung
and Jazizadeh 2019) uses min-max normalization to scale the
thermal comfort readings. Authors in (Yu et al. 2011) use min-
max normalization on occupant behavior data to study the
influence the same on building energy consumption. There
are also some manually engineered ways for normalization
as done in (Chaudhuri et al. 2018), where authors perform
normalization of skin temperature (continuous feature) by
specifically designing a factor that indicates the unclothed/ex-
posed body surface area. They also show that normalization
improves the stratification of thermal classes. In our work,
we state the shortcomings of the above methods (Sec ) for
continuous features, and propose the use of a novel method,
namely, mode-based normalization (Section ). The above
method, originally proposed in (Xu et al. 2019), is used to
generate synthetic samples for tabular datasets among other
possible applications.

When it comes to transformation for discrete features, not
much special attention has been given to dequantize them
before feeding them into machine learning models such as
neural networks that are designed to approximate a smooth
function with desirable accuracy provided sufficient neurons
are used. At the best, one-hot encoding has been used to en-
code categorical variables. For example, Wang et al. (Wang
et al. 2020) study the thermal comfort models designed using
ASHRAE database (Ličina et al. 2018), and state that one-hot
encoding is commonly used to encode categorical variables
such as building type. Authors in (Kramer et al. 2021) also
perform one-hot encoding of the categorical features during
data pre-processing. Similar is the case for works on data-
driven optimization of building designs (Sonta, Dougherty,
and Jain 2021), modeling of energy demand response in
buildings (Antonopoulos et al. 2021), etc. This does not only
result in high-dimensional data when the categorical vari-
ables have many levels, it also gives rise to multiple more
variables that are discrete in themselves. To the best of our
knowledge based on extensive literature search, there are no
existing works that focus on using dequantization methods
for discrete feature transformation for machine learning ap-
plications in smart buildings. We propose two methods for
dequantizing discrete features, namely uniform and varia-
tional dequantization (Ho et al. 2019). We discuss the ways
and cases where the proposed methods can be used, and im-

plement them for a real-life smart building dataset to test for
their strength.

Methodology
In this section, we describe the proposed pre-processing steps
for tabular data. We provide a brief introduction of generative
flow models in the Appendix.

Data Pre-Processing
Data pre-processing involves a series of steps, such as data
cleaning to get rid of or replace missing and/or noisy data,
data transformation, dimensionality reduction (if needed)
etc. We particularly focus on the data transformation part,
keeping the other steps same as others existing in the liter-
ature. Let us assume the dataset in hand is represented by
X ∈ Rn×p, which means we have n samples, and p features.
The p features are be a mix of both continuous and discrete/-
categorical columns. Let us represent the continuous feature
vectors by Xc

1 , X
c
2 , · · · , Xc

α, and the discrete feature vectors
by Xd

1 , X
d
2 , · · · , Xd

β . Note here that α + β = p, and each
of the above feature vectors have the dimension of n× 1. A
continuous feature comprises of values from a continuous
domain (e.g., R). A discrete feature takes a value from a
discrete set and can either be nominal or ordinal. The number
of possible values for each discrete feature can vary among
the set of discrete features. Both the continuous and discrete
features must be processed in specialized ways for it to be
compatible for machine learning (especially neural network)
models. Therefore, we propose two data pre-processing meth-
ods towards the above goal: mode-specific normalization
for continuous features, and variational dequantization for
discrete features. An illustration of above pre-processing is
shown in Fig. 1.

Mode-specific Normalization for Continuous Features
Continuous features in tabular data are usually non-Gaussian
and have a number of modes from where the data samples
might come from. Gaussian distribution has a single mode,
and thus applying transformations that has been used in prior
works, such as gaussian or min-max normalization will lead
to vanishing gradient problem (Xu et al. 2019). Detecting
the modes present in the data and using their parameters
to normalize the data will help in handling features with
complex distributions, a process referred to as mode-specific
normalization (Xu et al. 2019). In mode-specific normaliza-
tion, unlike conventional min-max or gaussian normalization,
we first detect a mode of the feature distribution from which a
particular data sample is highly probable to have come from,
and then normalize it with the mean and standard deviation of
that particular mode. Post normalization, each feature vector
is transformed into two feature vectors, one corresponding to
the mode-normalized values which is continuous in nature,
and another to the identifier of the mode which was selected
for normalization which is discrete in nature. The steps of
this process are as follows:
1. A variational gaussian mixture model (VGM) (Nasios and

Bors 2006) is trained to estimate the number of possible
modes for continuous features Xc

1 , X
c
2 , · · · , Xc

α. For il-
lustration, let us assume for ith continuous feature Xc

i , m
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Figure 1: Illustration of the proposed data-preprocessing method.

number of modes were found. For jth data sample (i.e.
jth row of the dataset), the probability of occurence of
the value xc

ij in feature Xc
i is,

PXc
i
(xc

ij) =

m∑
k=1

ηkN (xc
ij ;µk, ϕk)

where, ηk, µk, ϕk are the weight, the mean and the stan-
dard deviation of mode k.

2. To choose a mode to normalize data xc
ij , we compare the

probability of that value coming from each of the possible
modes, i.e. mode k∗ is chosen for normalization as per,

k∗ =
m

argmax
k=1

ηkN (xc
ij ;µk, ϕk)

3. Finally, the normalized output and identifier are:

Mode-normalized value =
xc
ij − µk∗

4ϕk∗

Mode Identifier = k∗

We represent the feature vector with mode-normalized val-
ues (which is a continuous feature) for Xc

i as Xcc
i , and the

feature vector with corresponding mode-identifiers (which
is a discrete feature) as Xcd

i . Effectively, Xc
i is transformed

into Xcc
i and Xcd

i .

Uniform and Variational Dequantization for Discrete Fea-
tures Dequantization refers to adding noise to discrete val-
ues to make them continuous. Since many of the machine
learning models such as neural networks are smooth func-
tion approximators, making the discrete features continuous
by adding small amounts of noise helps the machine learn-
ing model learn the discrete feature distribution efficiently.
The distribution from which the noise is extracted brings in
the novelty among the dequantization methods. We use two
methods for dequantization, namely uniform, and variational
dequantization (Ho et al. 2019). In uniform dequantization,

noise from a compatible uniform distribution is added to
the discrete features, whereas, in variational dequantization,
the amount of noise that has to be added is dependent on
the original data distribution. At this stage, we dequantize
the original discrete features that were present in the dataset
(Xd

1 , X
d
2 , · · · , Xd

β), along with the hybrid discrete features
that were created as part of the mode-based normalization
process before (Xcd

1 , Xcd
2 , · · · , Xcd

α ). Let us denote the union
of both the above sets of discrete features as X̃d.

For dequantization, we add noise u to the feature set X̃d,
i.e.

X̃d
deq = X̃d + u

In uniform dequantization, u is sampled from an uniform
distribution [0, 1]α+β . As it can be observed, the noise added
does not have any relation with the data to which it gets
added, which although solves the problem of fitting continu-
ous distribution to discrete data but still makes it sub-optimal
to learn the data distribution due to the step function in uni-
form noise distribution. On the other hand, in variational
dequantization, u comes from a variational posterior distri-
bution q(u | X̃d). Variational dequantization is powerful
as compared to uniform dequantization because the noise
added is dependent on the data, hence producing a smooth
processed data distribution that is easier for the downstream
machine learning model to learn. We model the posterior
distribution as a conditional generative flow as u = qx̃d(ϵ),
where ϵ ∼ N (0, I) is gaussian noise. The conditional flow
model is jointly trained with the downstream neural network
model being trained on the pre-processed data.

We model the conditional flow with coupling transforma-
tions as has been proposed in (Ho et al. 2019). The coupling
transformations (F ) are designed to follow the cumulative
density function (CDF) of mixture of M logistic distributions,
represented by LMCDF, i.e.

FLMCDF (y;π, µ, s) =

m∑
i=1

πiσ((y − µi) exp(−si))



Table 1: List of continuous and discrete features for the datasets used in the experiment

Dataset Continuous Features Discrete Features
Comfort
Database

Standard Effective Temperature, air temperature, relative
humidity, air velocity

Clothing level, metabolic rate

Wearables
Dataset

Temperature, humidity, wind velocity, physiological pa-
rameters: temperature at wrist, ankle, and pant, heart rate

Vote time (morning (7am-12pm), afternoon (12pm-5pm),
evening (5pm-10pm), night (10pm-7am)), location during
vote (indoors/outdoors)

where, π, µ, s ∈ Rdim(y) are the parameters of logistic mix-
ture distribution corresponding to mixture weight, component
means, and component scales, respectively, and σ(.) denotes
the sigmoid function. The input noise vector ϵ is partitioned
into two parts, ϵ = [ϵ1, ϵ2], as is done for affine flow models.
The dequantization noise u is formulated as,

y = NNθ(x̃
d)

π, µ, s = NNδ([ϵ1,y])

u1 = ϵ1,u2 = FLMCDF ((ϵ2;π, µ, s)

u = σ([u1,u2])

where, NN(θ) and NN(δ) are neural networks parametrized
by θ and δ respectively. We stack multiple such layers in a
cascaded manner to generate the dequantization noise u.

An important observation to have here is that in variational
dequantization, the networks generating noise are trained in
tandem with the downstream model that gets fed with the
pre-processed data. Additionally, variational dequantization
is designed using neural networks as noise generators. Hence,
above method should be used when the downstream model
used is a neural network itself that trains using stochastic
gradient descent, which essentially holds true for all the deep
learning applications in buildings. In cases where the down-
stream model is not a neural network, uniform dequantization
can be a good choice for discrete data transformation.

After the above preprocessing steps, the original data X
becomes,

X = Xcc
1 ⊕ · · · ⊕Xcc

α ⊕Xcd
1,deq ⊕ · · · ⊕Xcd

α,dequantized⊕
⊕Xd

1,deq ⊕ · · · ⊕Xd
β,deq

which is then used for downstream tasks such as forecasting,
prediction, segmentation or synthetic data generation.

Experiments
In this section, provide the features metadata of datasets we
use, and then share the experimental settings and results.

Datasets

As representative tabular datasets available in smart buildings,
we choose two publicly available thermal comfort datasets
(obtained from right-here-right-now readings as well as per-
sonal thermal comfort field experiments) for testing our pre-
processing methods. We test our methods independently for
each of the above datasets.

Comfort Database/ASHRAE Global Thermal Comfort
Database II The ASHRAE Global Thermal Comfort
Database II (Ličina et al. 2018), or as we will call “com-
fort database”in rest of the paper, is one of the large and
mostly used dataset when it comes to designing and testing
thermal comfort algorithms, as well as to study the thermal
comfort distribution across building types, geographies etc.
It is built up off the data from thermal comfort studies con-
ducted around the world in the last two decades from the time
the paper was published. It provides thermal comfort mea-
surements, as well as the preference label. We picked six of
the most significant variables for data-driven thermal comfort
in line with previous researches using this dataset (Quintana
et al. 2020). Specifically, the features chosen are Standard
Effective Temperature (SET), clothing level, metabolic rate,
air temperature, relative humidity, air velocity. The charac-
teristic type (continuous/discrete of these features is given
in Table 1. Post data cleaning to get rid of missing values/
NaNs, the total number of data samples remaining was 56148.
The distribution of data samples in the three thermal prefer-
ence classes was “Prefer cooler”: 17794, “Prefer no change”:
28195, “Prefer cooler”: 10159.

Wearables Dataset We refer wearables dataset to the data
collected from personal thermal comfort experiment using
wearable sensors by Liu et al. (Liu et al. 2019). The authors
conducted an experiment to collect physiological signals (e.g.,
skin temperature at various parts of the body, heart rate) of
14 subjects (6 female and 8 male adults) and environmental
parameters (e.g., air temperature, relative humidity) for 2–4
weeks (at least 20 h per day). The subjects also took an online
survey on a daily basis, where they reported their thermal sen-
sation (on a scale of -3 to +3), thermal preference (Warmer,
Cooler, No Change), and position (indoor/outdoor) among
other parameters. The authors have performed feature engi-
neering to obtain the mean, standard deviation and gradient of
physiological features over last 5 mins, 15 mins, and 60 mins
of the vote time, which we use in our work. We ranked the
features in the dataset as per the amount of missing values/-
NaNs existing in them, and got rid of those with large number
of missing values. After data cleaning, we had approximately
210 samples available per subject. We also converted the
vote time variable to a categorical variable as per the follow-
ing mapping: “Morning”(7am to 12pm), “Afternoon”(12pm-
5pm), “Evening”(5pm-10pm), “Night”(10pm to 7am). The
distribution of continuous and discrete features that we use
for experimentation using this dataset is given in Table 1. The
dataset for every subject is highly class-imbalanced with the
“Prefer no change”class being the most frequent class.



Experimental Settings
Testing Procedure: For comfort database, we designed
classifiers to classify the thermal preference classes. For wear-
ables dataset, we designed personal thermal comfort models
(specific to each subject) to classify their individual thermal
preference. As per standard practice (Liu et al. 2019), for each
classifier, we conducted 5-fold cross validation repeated 20
times to estimate the average predictive performance. We re-
port the classification accuracy. Since the datasets are highly
class-imbalanced, accuracy alone is not a correct representa-
tive of classification performance. So, along with accuracy,
we report the cross-validated macro F-1 score (Mishra 2018).

Machine Learning Models and Data Pre-Processing: We
experimented with a number of machine learning models
ranging from kernel based and tree based methods, to neural
networks. Specifically, we use Linear Discriminant Analysis
(LDA), K-Nearest Neighbors (KNN), Gaussian Naive-Bayes
(GNB), Extra Trees, Random Forest, and feed-forward neu-
ral networks. Based on our literature review, we found that
random forest (also a tree-based classifier) performs at par
or better as compared to Gradient Boosted Trees (GBM) or
Extra Trees algorithm (Liu et al. 2019), which is why it is
considered the state-of-the-art in thermal preference predic-
tion models. Hence, we used random forest as a representa-
tive algorithm for tree-based model family. Neural Network
models, owing to the way they are designed and trained
(using Stochastic Gradient Descent), are compatible with a
range of advanced machine learning algorithms such as trans-
fer learning- adversarial domain adaptation, synthetic data
generation, variational inference etc. Implementing neural
network models thus opens the door to otherwise impossi-
ble enhancements from the machine learning world that can
be used to improve algorithms in smart buildings. We use
gaussian normalization for continuous features, and one-hot
encoding for discrete features as the baseline pre-processing
methods, as the above choice is commonly used for tabular
data pre-processing in existing works. We then test our pro-
posed pre-processing methods: mode-based normalization
for continuous features, and uniform/variational dequanti-
zation for discrete features along with the neural network
models, and compare them against the above baseline. The
neural network architecture for the classifier was kept the
same between the baseline pre-processing method, and our

proposed methods. For variational dequantization, we use 4
layers of flow models with each layer having feed-forward
neural networks representing the NN as mentioned in Sec. .
For wearables dataset, we report results from random forest
as the kernel-methods baseline (since it is considered as the
state-of-the-art model for thermal preference prediction), and
neural network models for a better presentation of the results
across multiple subjects. We run the neural network models
in a NVIDIA V100 GPU, and use Adam optimizer with a
learning rate of 1e− 4.

Results
The classification metrics: accuracy and F-1 scores with their
standard deviation bounds for different machine learning
models combined with different data pre-processing methods
for comfort database is given in Table 2. Among the kernel
and tree-based methods, it can be observed that random forest
performs the best in terms of accuracy and F-1 score among
other models. With a feed-forward neural network, which
comes with better expressivity potential, while keeping the
data preprocessing method the same, we see a 4.37% relative
improvement in accuracy, and a 6.59% relative improvement
in F-1 score as compared to the random forest results. With
our proposed pre-processing methods, mode-based normal-
ization for continuous features, and uniform dequantization
for discrete features along with the same neural network
model, we see a relative performance improvement of 7.17%
in accuracy and a significant 14.77% improvement in F-1
score over random forest. It is to be expected because effec-
tively by dequantizing and normalizing, we are smoothing
the distribution for the continuous neural network models
to learn. In the above combination, if we replace uniform
dequantization with variational dequantization, we observe a
relative improvement of 11.19% in accuracy, and a 19.56%
improvement in F-1 score over random forest. This improve-
ment in scores is indicative of the potential of the proposed
data transformation methods for tabular data.

In the case of wearables dataset, we designed personal
thermal comfort predictors using the above machine learning
models. The accuracy and F-1 scores for various models for
2 subjects is given in Fig. 2, and for all subjects is given in
Appendix. Across all subjects, the average relative improve-
ment over random forest in accuracy was 0.72%, and in F-1
score was 2.79% for a neural network model with gaussian

Table 2: Thermal preference classification performance with standard deviation bounds for comfort database using various
machine learning models and data pre-processing methods.

Data Pre-processing Method Machine Learning Models Accuracy (%) F-1 Score (%)

Gaussian normalization for continuous features and
One-hot encoding for discrete features

(Conventional Method)

Linear Discriminant Analysis (LDA) 53.8± 0.4 38.9± 0.5
K-Nearest Neighbors 52.8± 0.4 46.7± 0.5

Gaussian Naive-Bayes 52.5± 0.4 43.1± 0.5
Extra Trees 57.1± 0.5 50.1± 0.5

Random Forest 57.2± 0.5 50.1± 0.5
Neural Network 59.7± 0.7 53.4± 0.8

Mode-based normalization for continuous features and
uniform dequantization for discrete features (Our Work) Neural Network 61.3± 0.6 57.5± 0.6

Mode-based normalization for continuous features and
variational dequantization for discrete features (Our Work) Neural Network 63.6± 0.6 59.9± 0.4



normalization for continuous features, and one-hot encoding
for discrete features. When we implemented our proposed
mode-based normalization, and uniform dequantization, the
average relative improvement over random forest increased
to 2.71% in accuracy and 7.33% in F-1 score.

Figure 2: Personal thermal preference classification perfor-
mance with standard deviation bounds for various ML models
and data pre-processing methods. Since the datasets for each
subject is class-imbalanced, we report both the accuracy and
F-1 scores.

Finally, with mode-based normalization and variational
dequantization with a neural network model, we observed
the highest average relative improvement over random forest:
4.51% in accuracy and 11.22% in F-1 score. It can be ob-
served that the improvement in F-1 score with our proposed
methods is significant as compared to that in accuracy. It can
be attributed to better encoding of the minority classes, an
added benefit for imbalanced datasets commonly found in
smart buildings. An important observation to note is that for
subjects 4,8,9, and 14, the classification accuracy degrades
with the implementation of neural networks and proposed
pre-processing methods. One of the reasoning for the the
same can be the extreme class-imbalance found in thermal

preference classes for those subjects as observed in the fig-
ure in Appendix. The ratio between sum of all the minority
classes and the single majority class for these subjects is as
high as 1:7. However, the F-1 score always improves with im-
plementation of proposed pre-processing methods. Since our
methods are specifically designed for neural networks and
not random forest models, a fair separation and ablation study
of machine learning models and the pre-processing method
to understand the contribution of each towards the improve-
ment/degradation is difficult in this particular case. However,
keeping the neural network model fixed, when we imple-
ment gaussian normalization, mode-based normalization +
uniform dequantization, and mode-based normalization +
variational dequantization, the classification scores increases
in that order across all of the subjects. This proves that the
combination of the above proposed methods is beneficial for
tabular data pre-processing in smart buildings. The choice
of transformation method to be used depends on the partic-
ular application, and the machine learning models that are
planned to be implemented.

Conclusion and Future Work
In this research, we proposed the use of several novel data
transformation methods for use in tabular data pre-processing,
namely mode-specific normalization (for continuous fea-
tures), and uniform and variational dequantization (for dis-
crete features). We conducted experimental analysis of ther-
mal comfort prediction models (both group-based and per-
sonal thermal comfort) with the above data pre-processing
methods, and showed significant improvement in classifica-
tion accuracy and F-1 score as compared to state-of-the-art
results. In Sections , and , we also summarized the sce-
narios when the above methods can be used. Focusing on
the practical usability of our methods, all the pre-processing
methods we proposed, except for variational dequantization
are compatible with both kernel-based (LDA, KNN, GNB,
RF, GBM) and neural network models. However, the varia-
tional dequantization is only compatible with neural networks.
Hence, the choice of pre-processing method for discrete fea-
tures should be made based on the machine learning model
(kernel-based/neural network) chosen for the downstream
task. With the above consideration taken into account, since
the methods proposed are generalizable for any tabular data,
they can be seamlessly used for any smart building tabular
dataset, and can aid in efficient machine learning design.

In the current work, we mainly focused on one of the
main classes of structured data found in smart buildings,
namely tabular data, and conducted experiments on some
representative datasets. A line of future work include the
study of performance improvement by using the proposed
pre-processing methods in several other smart building and
energy system machine-learning tasks.
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Appendix
Normalizing Flow Models Generative flow models are
invertible mapping between the data space which has an un-
known and complex probability distribution, and a latent
space which is a known simple distribution, mostly taken
as the standard gaussian N (0, I). They are trained using
maximum-likelihood estimation, usually with unsupervised
data (Das, Abbeel, and Spanos 2019; Das et al. 2021a), ex-
cept when explicitly engineered to include some conditions,
e.g. (Das et al. 2021b). Below, we briefly cover the formula-
tion of flow models.

Let X be a high-dimensional random vector with un-
known true distribution P(X). The following formulation
is directly applicable to continous data, and with some pre-
processing steps such as dequantization (Uria, Murray, and
Larochelle 2013; Salimans et al. 2017; Ho et al. 2019) to
discrete data. Let Z be the latent variable with a known distri-
bution P(Z), such as a standard multivariate gaussian. Using
an i.i.d. dataset D, the target is to model P(X) with parame-
ters θ. A flow, fθ is defined to be an invertible transformation
that maps observed data X to the latent variable Z. A flow is
invertible, so the inverse function T maps Z to X, i.e.

Z = fθ(X) = T −1(X) and X = T (Z) = f−1
θ (Z)

The log-likelihood can be expressed as,

Pθ(X) = P(Z)

∣∣∣∣det(∂fθ(X)

∂XT

)∣∣∣∣ (1)

logPθ(X) = logP(Z) + log

∣∣∣∣det(∂fθ(X)

∂XT

)∣∣∣∣ (2)

where
∂fθ(X)

∂XT
is the Jacobian of fθ at X. The invertible

nature of a flow allows it to be capable of being composed
of other flows of compatible dimensions. In practice, flows
are constructed by composing a series of component flows.
Let the flow fθ be composed of K component flows, i.e.
fθ = fθK ◦ fθK−1

◦ · · · ◦ fθ1 . Then the log-likelihood of the
composed flow is,

logPθ(X) = logP(Z)+

log

∣∣∣∣det(∂(fθK ◦ fθK−1
◦ · · · ◦ fθ1(X))

∂XT

)∣∣∣∣
which follows from the fact that det(A · B) = det(A) ·
det(B). The reverse path, from Z to X can be written as a
composition of inverse flows, X = f−1

θ (Z) = f−1
θ1

◦f−1
θ2

◦· · ·◦
f−1
θK

(Z). Confirming with above properties, different types
of flows can be constructed (Kingma and Dhariwal 2018;
Dinh, Sohl-Dickstein, and Bengio 2016; Dinh, Krueger, and
Bengio 2014; Behrmann et al. 2018; Chen et al. 2019).



Figure 3: Personal thermal preference classification performance with standard deviation bounds for various ML models and
data pre-processing methods. Since the datasets for each subject is class-imbalanced, we report both the accuracy and F-1 scores.


