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Abstract

Cycling stress assessment, which quantifies cyclists’ per-
ceived stress imposed by the built environment and motor
traffics, increasingly informs cycling infrastructure planning
and cycling route recommendation. However, currently cal-
culating cycling stress is slow and data intensive. We propose
a deep learning model to support accurate, fast, and large-
scale cycling stress assessments for urban road networks
based on street-view images. We apply contrastive learning to
learn compact and informative image embeddings that facili-
tate the prediction performance of the proposed model. On a
dataset of 39,153 road links collected in Toronto, Canada, our
initial results demonstrate the effectiveness of our model and
the value of using image data in the absence of high-quality
road geometry and motor traffic data.

1 Introduction
Safety and comfort concerns have been repeatedly identified
as major factors that inhibit cycling uptake in cities around
the world. A range of metrics (Callister and Lowry 2013;
Furth, Mekuria, and Nixon 2016; Huertas et al. 2020) have
been proposed to quantify cyclists’ perceived stress imposed
by the built environment and motor traffics. These metrics
are predictive of cycling behaviors (Imani, Miller, and Saxe
2019; Wang et al. 2020) and accidents (Chen et al. 2017),
and thus have been applied to support cycling infrastruc-
ture planning (Lowry, Furth, and Hadden-Loh 2016; Gehrke
et al. 2020; Chan, Lin, and Saxe 2022) and route recom-
mendation (Chen et al. 2017; Castells-Graells, Salahub, and
Pournaras 2020). However, calculating these metrics typi-
cally requires high-resolution road geometry and motor traf-
fic data, such as motor traffic speed and volume, the lo-
cations of on-street parking, and the presence/type of cy-
cling infrastructure on each road link. The practical chal-
lenge of collecting accurate and up-to-date data hinders the
broader application of cycling stress assessment and other
tools building on it.

In this paper, we propose a deep learning model to assess
the cycling stress of urban road networks. From a dataset of
39,153 road links collected in Toronto, Canada, our model
learns to automate the assessment of the level of traffic stress
(LTS) metric (Furth, Mekuria, and Nixon 2016) based on
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Figure 1: Example street-view images with the four LTS la-
bels: LTS1 roads are comfortable for all cyclists including
children, LTS2 roads are comfortable for most adults, LTS3
roads are for “enthused and confident” cyclists, LTS4 roads
are for “strong and fearless” cyclists.

street-view images. As illustrated in Figure 1, road links
are classified into four classes, i.e. LTS1–4, corresponding
to the cycling suitability of four types of cyclists. LTS1/2
and LTS3/4 are, respectively, referred to as low-stress and
high-stress hereon because LTS2 corresponds to the cycling
stress tolerance for most adults (Dill and McNeil 2016).
LTS has been applied in studies to investigate the connectiv-
ity (Lowry, Furth, and Hadden-Loh 2016; Kent and Karner
2019) and equity (Tucker and Manaugh 2018) of urban cy-
cling networks and to evaluate cycling interventions during
the COVID-19 pandemic (Lin, Chan, and Saxe 2021). Our
model can facilitate timely, accurate, and large-scale assess-
ments of cycling stress because up-to-date street-view im-
ages are easy to access via software such as Google Street



View API, which publishes over 16 million kilometers of
street-view images in over 80 countries (Raman 2017). Our
model has the flexibility to integrate available link features
as model inputs, which helps enhance the model’s prediction
accuracy. While we focus on LTS for demonstration, our ap-
proach can be generalized to any cycling stress metrics.

Our initial results demonstrate the effectiveness of com-
puter vision approaches in cycling stress assessment. Using
only street-view images, our model achieves an LTS pre-
diction accuracy of 65.49% and a high/low-stress prediction
accuracy of 88.01%. By integrating the street-view images
with link features that are relatively easy to access, such as
speed limit and the number of lanes, our model achieves an
LTS prediction accuracy of 80.90% and a high/low-stress
prediction accuracy of 90.43%.

2 Method
2.1 Data Collection
Training and testing our model required: i) road network
topology, ii) ground-truth LTS labels associated with the
road links, and iii) street view images that clearly present the
road links. We collected all the data in Toronto, Canada due
to our collaboration with the City of Toronto, which granted
us access to detailed and accurate road network and motor
traffic data for LTS calculations. Once trained, our model
can be used to perform cycling stress assessments for other
cities’ road networks. Next, we introduce our data sources
and the data collection processes in detail.

Road network topology. We retrieved the centerline road
network from the Toronto Open Data Portal (City of Toronto
2020). The network was stored as an ArcGIS shape file
where a road link was defined as a road segment that con-
nects two adjacent road intersections. Geospatial coordi-
nates of both ends of each link were presented. We excluded
links where cycling is legally prohibited, e.g. expressways
and railways. The final network consisted of 59,554 road
links.

LTS Labels. The LTS calculation required detailed link-
level data, such as the number of lanes, the presence/type
of cycling infrastructure and on-street parking, and aver-
age motor traffic speed and volume during morning rush
hours on weekdays. We collected these data from the sources
summarized in Lin, Chan, and Saxe (2021) and calculated
the LTS for each link following Furth, Mekuria, and Nixon
(2016) and Imani, Miller, and Saxe (2019).

Street-view images. We collected street view images us-
ing the Google StreetView API. We chose not to collect im-
ages for links that were shorter than 50 meters because a
significant portion of those images typically presented ad-
jacent road links and or intersections that may have differ-
ent LTS labels. For each of the remaining links, we collect
one image using the geospatial coordinate of its mid-point
and a camera angle calculated based on the coordinates of
its two ends. We manually examined the collected images
to ensure that every image clearly presented the associated
link. If a link failed the human screening, the image was re-
collected manually when possible. Images were missing for

links where driving is prohibited, such as trails and narrow
local passageways, resulting in a loss of 1,298 images.

Our image dataset consisted of 39,153 high-quality street
view images, with 41.4%, 35.2% 12.6%, and 10.8% of them
labeled as LTS1–4, respectively. Images were represented
as 320 × 320 tensors of 3 (RGB) channels. We performed a
random 70/15/15 train-validation-test split.

2.2 Model Architecture
We propose a deep learning model that predicts the LTS of
a road link based on its street-view image and link features
that are available. As illustrated in Figure 2, our model con-
sists of three modules:
• Image embedding. This module extracts useful infor-

mation from the street view image and represents it as a
64-dimensional vector. We implement this module with
a ResNet-50 (He et al. 2016) encoder followed by two
fully connected layers.

• Link-feature embedding. This module allows us to in-
corporate link features when they are available. Per-
forming link feature embedding prevents the prediction
module from being dominated by the image embedding,
which is higher dimensional compared to the original
link feature vector. We implement this module with a
fully connected layer.

• Prediction. This module takes as inputs the average of
the image embedding and the link-feature embedding
and outputs a four-dimensional vector representing the
probability of the link being classified as LTS1–4, respec-
tively. We implement this module with a fully connected
layer followed by a soft-max layer.

Figure 2: Model architecture.

We provide more details on model architecture in Ap-
pendix A.2. Next, we discuss our training methods, focusing
on the image embedding module.

2.3 Model Training
Supervised learning. Perhaps the most straightforward
way is to train the three modules simultaneously to min-
imize the cross-entropy loss of the LTS prediction. While
the resulting model yields promising prediction performance
(Section 4), our model experienced severe overfitting issues
due to the challenge of learning a complex mapping from
a relatively small dataset. Motivated by recent successes in
contrastive learning (He et al. 2020; Chen et al. 2020; Khosla
et al. 2020), we hypothesize that training the image embed-
ding module on an auxiliary task beforehand and freezing



it during the training of the other two modules would help
to reduce the model complexity and thus facilitates learn-
ing on the small dataset. Next, we briefly introduce two con-
trastive learning approaches, one self-supervised and one su-
pervised, that we experimented with in our initial study.

Self-supervised contrastive learning. We use the MoCo
framework (He et al. 2020) to train the encoder f on a pre-
text task where the encoder learns to position “similar” im-
ages close to each other in the embedding space. Specifi-
cally, we create another encoder g that has the same structure
as f and whose parameters are updated using the momentum
update function (He et al. 2020) as we train f . Given a batch
of N images X = {xi}Ni=1, a stochastic augmentation mod-
ule is applied twice to each image xi ∈ X leading to two im-
age views x̄i and x̃i. Let z̄i = f(x̄i) and z̃i = g(x̃i) denote
the embedding of the two views. The encoder f is trained to
minimize the InfoNCE loss (Oord, Li, and Vinyals 2018):

Lself = − 1

N

N∑
i=1

log
exp(z̄ᵀi z̃i/τ)∑

k∈K exp(z̄ᵀi z̃k/τ)
(1)

where τ is a temperature hyper-parameter, K is a queue of
length l that consists of image embeddings generated by g
so far. The queue is initialized randomly and updated with
the new embeddings z̃i for i ∈ [N ].

Supervised contrastive learning. While using the image
embeddings generated by MoCo enhances the prediction
performance of our model (Section 4), it does not consider
the LTS labels {yi}ni=1 associated with street-view images.
Inspired by the supervised contrastive learning loss pro-
posed by Khosla et al. (2020), we adapt the MoCo frame-
work to train the encoder f to minimize the following loss:

Lsup = − 1

N

N∑
i=1

∑
j∈Ki

log
exp(z̄ᵀi z̃j/τ)∑

k∈K exp(z̄ᵀi z̃k)/τ)
(2)

where Ki = {k ∈ K : yi = yk} are indices of views in the
queue that have the same LTS label as view x̄i for i ∈ [N ].

3 Experiments
3.1 Experiment Setups
We evaluated our model on three scenarios where the deep
learning model learns to predict LTS of road links based on
1. Street-view images
2. Street-view images, number of lanes, and speed limit.
3. Street view images, road type (e.g. major/minor arterial,

laneway, trail), and presence of cycling infrastructure.
The design of these scenarios were informed by the data col-
lection challenges we encountered in Toronto. The number
of lanes and speed limit of each road link were accessed
via Open Data Canada (Government of Canada 2020). Road
types and the presence of cycling infrastructure on road
links were available via Open Data Toronto (City of Toronto
2020). However, since the two data platforms used differ-
ent base maps, combining features from these two sources
took considerable manual effort, echoing the data collection
challenges in many other cities.

Computational setups are detailed in Appendix A.1.

3.2 Baselines
To demonstrate the value of using image data, in scenarios
where link features were available, we used the Classifica-
tion and Regression Tree (CART) and Random Forest (RF)
that predict LTS only using link features as baselines. Tree
models were chosen as most link features were categorical.

To showcase the value of contrastive learning, we com-
pared the predictive power of the learned image embeddings
against image embeddings obtained from ResNet-50 (He
et al. 2016) pre-trained on the ImageNet (Deng et al. 2009).

3.3 Evaluation Metrics
Given a test set ofNtest links, let ŷi denote the predicted LTS
of link i. We considered the following evaluation metrics.
• LTS Prediction Accuracy (Acc)

Acc =
1

Ntest

Ntest∑
i=1

1[yi = ŷi] (3)

• High/Low-Stress Prediction Accuracy (H/L Acc)

H/L Acc =
1

Ntest

Ntest∑
i=1

1[h(yi) = h(ŷi)] (4)

where h is a function that convert an LTS label to high
(= 1) or low-stress (= 0).

• False Low-Stress Rate (FLR)

FLR =

∑Ntest
i=1 1[h(ŷi) = 0]∑Ntest
i=1 1[h(yi) = 1]

(5)

• False High-Stress Rate (FHR)

FHR =

∑Ntest
i=1 1[h(ŷi) = 1]∑Ntest
i=1 1[h(yi) = 0]

(6)

• Average False High/Low-Stress Rate (AFR)

AFR =
FLR + FHR

2
(7)

Acc and H/L Acc measured the overall prediction per-
formance. FLR, FHR, and AFR considered the fact that the
dataset is imbalanced with a higher portion being low-stress.

4 Results
Table 1 compares the prediction performance achieved by
our model using different training methods for the image
embedding module versus baseline models based solely on
link features when available.

Street view images are valuable assets for cycling
stress assessments. Our model achieved an LTS predic-
tion accuracy of 65.49% and a high/low-stress accuracy of
88.01% only using street-view images. When link features
were available, incorporating street-view images led to an
increase of 1.84%–12.61% in overall prediction accuracy
with little to no increase in AFR. By combining street-view
images with the speed limit and the number of lanes, our



Feature Evaluation Metric

Encoder/Model Image Road Infras. Speed #Lanes Acc (%) H/L Acc (%) FLR (%) FHR (%) AFR (%)

Res50 X 65.49 88.01 28.87 6.60 17.74
Res50-ImgNet X 59.24 85.63 41.62 5.68 23.65
MoCo X 63.31 86.24 36.83 6.40 21.62
SupMoCo X 64.29 86.82 31.13 7.46 19.30

CART X X 57.50 89.87 8.17 10.76 9.47
RF X X 57.52 89.89 8.03 10.78 9.41
Res50 X X X 68.45 89.46 27.89 5.01 16.43
Res50-ImgNet X X X 68.16 90.55 20.14 6.22 13.18
MoCo X X X 69.66 90.57 19.93 6.09 13.01
SupMoCo X X X 70.13 91.44 14.37 6.71 10.54

CART X X 79.02 88.12 41.55 1.10 21.33
RF X X 79.06 89.12 41.55 1.10 21.33
Res50 X X X 78.24 88.97 23.31 7.12 15.25
Res50-ImgNet X X X 79.70 89.24 39.51 1.59 20.55
MoCo X X X 80.37 89.94 35.21 2.04 18.63
SupMoCo X X X 80.90 90.43 29.23 3.30 16.27

Table 1: Prediction performance of the proposed deep learning model versus baseline methods on the test set (Ntest = 5,873).
The three blocks (from top to bottom) correspond to scenarios 1, 2, and 3, respectively. Res50 indicates the supervised learning
method, and Res50-ImgNet represents using image embeddings obtained from a pre-trained model. MoCo and SupMoCo
indicate self-supervised and supervised contrastive learning, respectively.

best-performing model achieved a prediction accuracy of
80.61% and a high/low-stress accuracy of 90.21%. Such a
model can be useful for cycling infrastructure planning and
route recommendation tools that do not require the granular-
ity of four LTS categories and focus solely on the difference
between high- and low-stress links.

Pre-trained image embedding modules help to im-
prove the prediction performance when link features are
available. In scenarios two and three, using image embed-
dings obtained from MoCo and SupMoCo improved overall
prediction accuracy by 1.21%-2.13% and 1.68%-2.66%, re-
spectively. Using a general-purpose image embedding mod-
ule (Res50-ImgNet) did not lead to a consistent improve-
ment in prediction accuracy across the two scenarios. In sce-
nario one where only image data were used as predictive fea-
tures, supervised learning (Res50) presented the best predic-
tion performance in four out of the five evaluation metrics.

5 Discussions and Future Research
While promising, our results highlight several challenges.
First, as presented in Figure 3, our initial models are not ef-
fective in distinguishing LTS3 links from LTS2/4 links. This
is because, by definition, the main difference between LTS3
and LTS2/4 links lies in motor traffic speed, which is not
readily available in street-view images. This issue was re-
discovered when visualizing the embeddings obtained from
MoCo and SupMoCo (see Appendix B.1) and it persists
even after incorporating the link speed limit as a feature.
Such confusions have important practical implications. For
example, labeling an LTS3 link as LTS2 may lead to a rec-
ommended route that exceeds cyclists’ stress tolerance and

results in increased risks of cycling accidents. This challenge
may be tackled by training a separate network to predict the
real motor traffic speed/volume using the data collected in
Toronto. Once developed, the outputs from this network can
be used as inputs to the current prediction module. We are
also working on a contrastive learning approach to better
separate LTS3 images from the rest in the embedding space.

Figure 3: Confusion matrices of the model that achieves the
highest prediction accuracy in each scenario. Values are nor-
malized over true LTS labels (rows).

Second, our prediction model does not consider the struc-
ture of urban road networks. Road links adjacent to each
other generally share similar motor traffic conditions and cy-
cling infrastructure and thus have similar LTS labels. Aug-
menting the current prediction model with spatial informa-
tion may help to regularize the predictions, leading to more
accurate and interpretable results. Such regularizations can
be incorporated via adapting the contrastive learning loss
and or performing post-processing for the LTS predictions.



A Experiment Details
A.1 Computational Setups
All deep learning models were implemented using PyTorch
1.7.1 in Python 3.6.0 with 32 GB of CPU RAM. Super-
vised learning approaches were implemented on a single
P100 GPU with 12 GB of memory. Contrastive learning ap-
proaches were implemented with a single RTX6000 GPU
with 24 GB of memory.

A.2 Model Architecture Details
The image embedding module are implemented with a
ResNet-50 encoder. We replace the last fully connected layer
with two fully connected layers with output sizes being 128
and 64, respectively. The link feature embedding module
was implemented with a fully connected layer whose input
size depends on the dimensionality of the feature vector and
the output size equals 64. The prediction module is imple-
mented with a fully connected layer whose input and out
sizes are set to 64 and 4, respectively. All fully connected
layers in the image embedding and link-feature embedding
modules use ReLU as the activation function.

A.3 Training Details
For supervised learning approaches, we initialize the en-
coder with the ImageNet-pretrained weight provided in Py-
Torch. All images are resized to 224× 224 to fit with the in-
put dimensionality of the ResNet-50 encoder. During train-
ing, all images undergo random-resized crop, color jittering,
random greyscale, random horizontal flip, and normalization
before being fed into the encoder. Only resize and normal-
ization are applied to the validation and test data. We use the
SGD optimizer with an initial learning rate of 0.01, a weight
decay of 0.0001, and a mini-batch size of 128. The model is
trained for 100 epochs. The model that achieves the lowest
validation loss is selected for evaluation on the test set.

For MoCo, we also initialize the encoder with ImageNet-
pretrained weights. In addition to the augmentations applied
in supervised learning, training images also undergo the ran-
dom Gaussian Blur as used by Chen et al. (2020). We use the
SGD optimizer with an initial learning rate of 0.03, weight
decay of 0.0001, and batch size of 128. The queue size l is
set to 6,400 such that the queue fits into the memory of a
single RTX6000 GPU. We follow He et al. (2020) to set the
temperature hyper-parameter τ = 0.07 and the momentum
coefficient to 0.999. When generating image embeddings,
each mini-batch is divided into four chunks which are en-
coded sequentially in order to address the information leak-
age issue noted by He et al. (2020) on a single GPU. The
encoder is trained for 200 epochs. Once trained, we adopt
the hyper-parameters used for supervised learning to train
the prediction and link-feature embedding modules.

For SupMoCo, we adopt the same hyper-parameters as
used for MoCo. According to our preliminary analysis, ap-
plying all the augmentations as used for MoCo results in
unconverging training loss. We thus only apply the ran-
dom crop, random greyscale, random horizontal flip, and the
Gaussian blur for SupMoCo.

B Additional Results
B.1 Embedding Visualizations
Figure 4 visualizes the image embeddings obtained from
MoCo and SupMoCo in a 2-dimensional space. When us-
ing MoCo, images with different LTS labels nested with
each other in the embedding space since their LTS labels
are not considered in the contrastive learning process. When
using SupMoCo whose goal is to position images with the
same LTS label close to each other in the embedding space,
images clearly form two clusters corresponding to LTS1
(square), and LTS2 (triangle). However, LTS3 and LTS4 im-
ages are not well separated, reflecting the challenge of dis-
tinguishing LTS3 links from others solely based on street-
view images.

Figure 4: Two-dimensional visualizations of the image em-
beddings obtained from MoCo and SupMoCo. Image em-
beddings are projected to the 2-dimensional space using the
Principal Component Analysis. We present the visualization
of 500 randomly sampled images from the training and test
sets, respectively, for clear presentation. Each marker rep-
resents one street-view image. Images with LTS1–4 labels
are coded with square, triangle, plus sign, and circle, respec-
tively.
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