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Abstract
Improving Traffic Signal Control (TSC) can bring many
benefits such as saving time for drivers and reducing
emission discharged by vehicles. Many studies have
proposed reinforcement learning-based traffic signal
controls which outperform traditional approaches from
traffic engineering. Generally, reinforcement learning
for TSC can be categorized into feature-based, pixel-
based, and hybrid methods. Regarding to performance,
feature-based TSCs outperform the other kinds. In this
paper, we revisit pixel-based TSCs. We propose World-
Light that learns a representation of traffic-state images
and inputs the representation into a reinforcement learn-
ing controller. WorldLight not only closes the gap be-
tween pixel-based and feature-based methods but also
outperforms state-of-the-art methods in some scenarios.

Introduction
Traffic congestion is still a major problem to many cities
around the world. It is because despite the massive invest-
ments in infrastructure to enhance the transportation system,
the increase in mobility demand within the metropolitan area
outstrips the network’s capacity. Enormous congestion costs
include the loss of productivity, pollution and environmen-
tal damages, and poor health due to stress and accidents
while commuting. According to the Urban Mobility report
(David Schrank 2021), traffic congestion causes 4.3 billion
hours of delay, wastes 101 billion gallons of fuel, and dam-
ages the U.S. economy around $101 billion USD in 2021.
One of the simplest yet effective methods to combat con-
gestion is the use of traffic signal control (TSC) which aims
to resolve conflict among different traffic movements and
minimize vehicle travel time at the intersections. Optimiz-
ing TSC to improve traffic flows and reduce congestion has
been intensively researched but is still a very active research
area due to the emerging of new technology and better ac-
cessibility of traffic data.

Due to its importance, TSC has been studied for a
long time. Generally, there are two approaches: rule-based
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and learned controls. More specifically, the early research
(James Bonneson 2011; Varaiya 2013) proposed rule-based
TSCs that are manually designed based on traffic-flow the-
ories. An example of a rule-based control is the actu-
ated controller (James Bonneson 2011), which has been
widely deployed in the field. These controllers read real-
time data from detectors to make actions. However, the
traffic-flow theories are usually developed with unrealistic
assumptions which can result in non-optimal solutions for
the real-world environments. With the development of ma-
chine learning, some researchers have applied reinforcement
learning (RL) for TSC (Wei et al. 2018; Liang et al. 2019;
van der Pol and Oliehoek 2016). By learning via a long
trial-and-error process, RL agents outperformed rule-based
TSCs (Ault and Sharon 2021; Tran, Doan, and Sartipi 2021;
Mei et al. 2022).

In the scope of this paper, we focus on investigating RL-
based TSCs. In general, RL for TSC can be categorized into:
pixel-based, feature-based, and hybrid methods. The first
studies that applied RL for TSC are pixel-based methods
(Liang et al. 2019; van der Pol and Oliehoek 2016), which
directly apply traffic-state images to the input. To understand
such high-dimensional data (i.e., images), pixel-based TSCs
implement convolutional neural networks, illustrated in Fig-
ure 1. Other methods that are feature-based (Zheng et al.
2019; Chen et al. 2020; Wei et al. 2019) exact features such
as number of vehicles on each lane, queue lengths, and av-
erage speed of vehicles; then the RL controller inputs these
features instead of the image iteself. Figure 2 presents the
workflow of feature-based RL for TSCs. There are also hy-
brid approaches that use both traffic-state images and fea-
tures as inputs to the RL controller.
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Figure 1: Pixel-based reinforcement learning for TSC
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Figure 2: Feature-based reinforcement learning for TSC

The high-dimensional images are difficult for RL to learn
during the trial-and-error process which has helped the
pixel-based TSCs to outperform both feature-based and hy-
brid methods (Ault and Sharon 2021; Tran, Doan, and Sar-
tipi 2021). Although the feature-based TSCs are state-of-
the-art methods, they have some limitations. First, feature-
based state representation methods are not optimal because
they lack comprehensive information. Second, it requires
manual work for feature designing. Finally, each existing
feature design is for a particular reward function. For ex-
ample, to optimize queue lengths (Zheng et al. 2019), the
authors had to try different feature designs to identify that
the number of vehicles on each lane has most influences.

In this paper, we revisit the pixel-based TSCs. We propose
WorldLight that can not only achieve competitive perfor-
mance compared to feature-based TSCs, but it also outper-
forms them in some scenarios. Instead of directly learning
from traffic-state images during trial-and-error processes,
WorldLight implements a world model (Ha and Schmidhu-
ber 2018a; 2018b) to learn the representation of the images.
The learned representation of WorldLight is comprehensive,
since it includes information on both the current and fu-
ture traffic states. In general, our contribution can be sum-
marized as the follows. We propose WorldLight that out-
performs state-of-the-art methods in some scenarios. The
methodology of WorldLight, i.e., learning the representation
of traffic-state images, closes the gap between pixel-based
and feature-based TSCs. We also conduct some analysis for
WorldLight including reward functions and RL algorithms.

The rest of this paper is organized as follows: Section
introduces WorldLight and details on the training process.
Experiments and results are summarized in . Finally, Section
concludes the paper and gives an outlook on future work.

Proposed Methodology – WorldLight
Figure 3 presents the architecture of the proposed method.
WordLight is a pixel-based method. The input of WorldLight
is an image which can represent comprehensive informa-
tion of the current traffic status. To extract features from
the image, WordLight implements a world model (Ha and
Schmidhuber 2018a; 2018b). The world model includes two
main components: AutoEncoder (AE) and Recurrent Mix-
ture Density Network (RMDN). More specifically, AE is to
represent the image into a latent vector z whose dimension
is much smaller than the raw image’s. Meanwhile, RMDN
aims to represent traffic modeling. RMDN inputs the latent
vector zt at time t and tries to predict the next latent vector
zt+1 at time t + 1. More precisely, RMDN includes RNN

layers to model the time series and a Mixture Density Net-
work (MDN) to understand the uncertainty of traffic. Sub-
sequently, the state vector s created by the world model is
the combination of the latent vector z and the hidden state
h. This state includes the information related to not only
the current traffic status (i.e., z), but also the traffic model-
ing/prediction (i.e., h). Finally, the RL controller inputs the
state vector s and returns the optimal action a. Because the
raw image is extracted to features by the world model, the
RL controller implements two full connected layers.

• AutoEncoder: We implement a variational au-
toencoder. The autoencoder compresses high-dimensional
traffic-state images to small latent vectors while minimiz-
ing information lost. The constructed image is more accurate
while increasing the latent vector size. However, the larger
latent vector causes more difficult for the RL controller.

• Recurrent Mixture Density Network: RMDN aims
to do the modeling task P (zt+1|at, zt, ht). There are two
components in RMDN: Recurrent Neural Network (RNN)
and Mixture Density Network (MDN) (Bishop 1994). More
specifically, RMDN applies LSTM layers (Hochreiter and
Schmidhuber 1997) for the RNN part to understand time
series patterns. Meanwhile, MDN is to model traffic un-
certainty. Instead of outputting directly zt+1, MDN returns
K Gaussian distributions for each element of zt+1. More
precisely, outputs of distribution k (distk) include mixing
coefficient πk, standard deviation σk, and mean µk. All
of these outputs are from the last full connected layer of
RMDN. Therefore, the number of units of the last layers is
|z| ∗ K ∗ 3. RMDN’s probability density function p(x) is
shown in Equation 1.

p(x) =

K∑
k

πkN (x|µk, σ
2) (1)

From the probability density function, we can train RMDN
by minizing the log likelihood loss function L(w).

L(w) = −
|z|∑
i=0

ln

(
K∑

k=1

πk(w)N
(
zi|µk(w), σ

2
k(w)

))
(2)

• Reinforcement Learning Controller: Because the in-
put of the controller is a 1D vector, the controller imple-
ments a standard full-connected neural network including 2
hidden layers with 64 units. To train this neural network,
we use the Proximal Policy Optimization (PPO) algorithm
(Schulman et al. 2017) which is the most powerful policy
gradient method for RL. RL agent includes three compo-
nents: state, reward, and action. As mentioned above, the
WordLight’s state is a vector which is the output of the world
model. The reward is the total negative queue lengths of in-
coming lanes. The action is the phase index which will be
executed for each interval τ . Generally, for each interval,
the world model processes the observed traffic-state image
to state vector s. Subsequently, the controller uses this vec-
tor to predict the optimal phase which will be executed for
the interval.
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Figure 3: WorldLight’s architecture

Training WorldLight
The training process for WorldLight is summarized as the
follows:

1. Collect rollouts from a random policy/actuated control.
2. Train AE.
3. Train RMDN to model P (zt+1|at, zt, ht).
4. Train RL Controller via a trial-and-error process.

Experiments & Results
Simulation setting
We conduct experiments in SUMO, which is a popular sim-
ulation in transportation. All experiments in this paper sim-
ulate a real-world intersection – MLK Blvd & Market St,
Chattanooga, TN, USA (Harris, Stovall, and Sartipi 2019).
The traffic demand is from this corridor and similar to sev-
eral existing datasets, provides number of vehicles. Addi-
tionally, it provides the arrival time of each vehicle, vehicle
movement vehicle class, and vehicle length. By using this
dataset, we can provide a realistic simulation.

Baselines
• LIT (Zheng et al. 2019) is a feature-based deep Q learn-

ing method with a careful design of state and reward.
• MPLight (Chen et al. 2020) is also a feature-based

method using deep Q learning.
• CNN-L (van der Pol and Oliehoek 2016) is a pixel-based

RL method which directly inputs an image of the intersec-
tion as the state.

• Actuated (James Bonneson 2011) is a rule-based
method that are running in the real world.

EXP1: Overall performance of WorldLight
• Setting: We conduct this experiment for a single inter-

section during the the peak hour from 4pm to 5pm. As stated

before, data is collected from the MLK Smart Corridor, so
our simulation is representing the exact distribution of traffic
flow. Each method is trained for 250 episodes.

• Result: Figure 4 presents the overall performance of
each methods. Generally, all RL-based methods outperform
the Actuated control. Feature-based RL methods (i.e., LIT
and MPLight) outperform the traditional pixel-based RL –
CNN-L. Although WorldLight is a pixel-based method, by
using world models, it outperforms the feature-based meth-
ods. Figure 4a presents the total queue length during the
training process. WorldLight and CNN-L converge faster
than LIT and MPLight, as illustrated in Figure 4a. One jus-
tification for this can be the different reinforcement learn-
ing algorithms (i.e., WorldLight and CNN-L use Proximal
Policy Optimization (Schulman et al. 2017), LIT and MP-
Light utilize Deep Q Learning (Mnih et al. 2015)). In addi-
tion, Figures 4b, 4c, and 4d show the average travel time,
queue length, and fuel consumption in the testing simula-
tion. More precisely, WorldLight slightly outperforms LIT
and provides more-stable performance across vehicles, i.e.,
smaller outlier values and less number of outliers. Actuated
is also stable because it is a rule-based strategy, while CNN-
L can cause long delay for some vehicles.

EXP2: Effects of reward function
• Setting: In this experiment, we investigate performance

of state representations of methods with different reward
functions. The simulation setting remains the same as the
one in Experiment 1 and each model is trained for 250
episodes. We considered four reward functions: one lane-
based, one movement-based, and two vehicle-based. r1 and
r2 are vehicle-based reward functions that consider waiting
time and average speed, respectively. Subsequently, r3 is a
lane-based reward function considering queue lengths. Fi-
nally, the movement-based reward function r4 focuses on
pressure.



0 100 200
0

1

2

to
ta

l
qu

eu
e

le
n

gt
h

(#
ve

h
s)

×104

(ep)

WorldLight

LIT

MPLight

CNN

Actuated

(a) Total queue length during
training

WorldLight LIT MPLight CNN Actuated
0

50

100

150

tr
av

el
ti

m
e

(s
)

(b) Average travel time of ve-
hicles during testing

WorldLight LIT MPLight CNN Actuated
0

10

20

30

qu
eu

e
le

n
gt

h
(#

ve
h

s)

(c) Average queue length of
steps during testing

WorldLight LIT MPLight CNN Actuated
0

20

40

60

80

100

fu
el

co
n

su
m

p
ti

on
(m

l)

(d) Average fuel consumption
of vehicles during testing

Figure 4: Performance of WorldLight and previous methods

• Result: Figure 5 depicts reward values of methods. For
all reward functions, the feature-based methods outperform
the traditional pixel-based methods. This trend is similar to
Experiment 1 as well as the results from previous studies
(Wei et al. 2021). However, our method with world mod-
els has closed the gap between feature-based and pixel-
based strategies. WorldLight performs the best in cases of r3
(queue length) and r4 (pressure). On the other hand, LIT is
better than WorldLight for r1 (waiting time) and r2 (speed).
This experiment shows that there is still no optimal way
of state representation that works for all reward functions.
This finding is also consistent with those in (Egea and Con-
naughton 2021). Therefore, designing state representation is
a critical task which strongly depends to the objective (i.e.,
reward function).
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Figure 5: Performance of the state representation methods
when using the same reward functions. For the negative total
reward figures (i.e., r1, r2, and r4), the lower value is better.
On the other hand, for the figure about r3, the higher value
is better.

EXP3: Effects of RL algorithms
• Setting: In this experiment, we investigate WorldLight’s

performance when using various reinforcement learning al-
gorithms. The simulation setting stays the same to the previ-
ous experiments. In total, we investigate three common RL
algorithms including Proximal Policy Optimization (PPO)
(Schulman et al. 2017), Advantage Actor Critic (A2C)
(Mnih et al. 2016), and Deep Q Learning (DQN) (Mnih et
al. 2015).

• Result: Figure 6 shows the performance of WorldLight
using different RL algorithms. More specifically, A2C is
the fastest training method, which converges after around
20 episodes. Meanwhile, PPO and DQN require 50 and 80
episodes, respectively. For the testing phase, PPO outper-
forms A2C and DQN. For instance, PPO reduces the average
travel time of vehicles by 0.9% and 2.3% compared to A2C
and DQN respectively. Futhermore, PPO rises the average
speed by 0.6% and 1.9% compared to A2C and DQN. This
experiment demonstrates the policy optimization methods
(i.e., PPO and A2C) are better than the Q-learning method
for WorldLight.
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Figure 6: Performance of WorldLight when using different
RL algorithms for the controller

Conclusion
In this paper, we introduced WorldLight, which closes the
gap between pixel-based and feature-based TSCs. World-
Light has demonstrated that learning the representation of
traffic-state images can achieve competitive results com-
pared to manual-designing features. Moreover, WorldLight
outperforms state-of-the-art methods in some scenarios. The
proposed method has shown promise for one intersection.
Future work will investigate the performance of this algo-
rithm along a corridor or a larger city network. Further-
more, recent proposed techniques to improve world mod-
els in robotic research such as contrastive learning and data
augmentation can be potential directions for WorldLight.
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