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Abstract

The advancement of Electronic Health Records (EHRs) and
machine learning have enabled a data-driven and personalised
approach to healthcare. One step in this direction is to uncover
patient sub-types with similar disease trajectories in a hetero-
geneous population. This is especially important in the context
of mechanical ventilation in intensive care, where mortality
is high and there is no consensus on treatment. In this work,
we present a new approach to clustering mechanical ventila-
tion episodes, using a multi-task combination of supervised,
self-supervised and unsupervised learning techniques. Our dy-
namic clustering assignment is explicitly guided to reflect the
phenotype, trajectory and outcomes of the patient. Experimen-
tation on a real-world dataset is encouraging, and we hope
that we could someday translate this into actionable insights
in guiding future clinical research.

Introduction and Related Work
Patients on mechanical ventilation are a highly heteroge-
neous group, with widely differing outcomes. Some have
relatively healthy lungs e.g. if they are recovering from
surgery on another organ; whereas others have varying de-
grees of pulmonary failure. Pulmonary failure can be acute
e.g. Acute Respiratory Distress Syndrome (ARDS) and dete-
riorate rapidly, or chronic, typically evolving slowly. Unfor-
tunately, patients on ventilators have high mortality (Máca
et al. 2017; Poole et al. 2017) and there is no established
consensus on optimal treatment strategies from randomised
controlled trials (Bein et al. 2016). Therefore, there is great
potential benefit to be gained from phenotype discovery in
order to guide future clinical studies.

To this end, we have developed a dynamic clustering ap-
proach for mechanically ventilated patients in the ICU. Pre-
vious work using simple clustering techniques has revealed
actionable sub-phenotypes by secondary analysis of RCT
data. For example, latent trajectory modelling of inflamma-
tory biomarkers has revealed sub-types of ARDS (Famous
et al. 2017). Clustering of transcriptomic data has revealed
patient populations in which steroid therapy may be benefi-
cial in sepsis (Antcliffe et al. 2019). Routinely collected data
has also been used to find trajectory clusters in sepsis based
on physiological parameters (Bhavani et al. 2022).
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We know that temporal neural network architectures can
handle the heterogeneous population in the ICU, both using
supervised (Rocheteau, Liò, and Hyland 2021; Harutyun-
yan et al. 2019) and unsupervised (Miotto et al. 2016; Wang
et al. 2020) approaches. Temporal clustering approaches have
been applied successfully to other domains e.g. in Parkin-
son’s (Zhang et al. 2019), diabetes (Rusanov, Prado, and
Weng 2016) and cystic fibrosis (Lee and van der Schaar
2020) and increasingly in intensive care as discussed above.

We have designed our clusters to share similarities in phe-
notype, trajectory and outcomes. We generate a cluster for
each hour of a patient’s stay, meaning that if an event happens
which alters the predicted trajectory and outcomes, there will
be a shift in the cluster assignment. This is interesting, not
only because it can reveal which events are associated with
these shifts, but also what might have happened if the ven-
tilation strategy had been different. We hope that our work
could someday translate into actionable insights in guiding
future clinical research.

Methods
Broadly, our strategy was to train a temporal encoder to
embed the patient data at every timestep (this is analogous to
returning all the hidden states for an LSTM model). We used
a mixture of supervised, unsupervised and self-supervised
learning to do this (see ‘Prediction Tasks’ below). Once the
encoder training was complete, we used an unsupervised
method to cluster the embeddings, so that we get a cluster
for every timestep in the patient’s ventilation episode. The
code can be found at: https://github.com/EmmaRocheteau/
Mechanical-Ventilation-Clustering.

The data consisted of both timeseries and static features.
The supervised tasks included two binary tasks: predicting
hospital mortality and the risk of receiving a tracheostomy1,
and two duration tasks: the remaining length of stay (LoS)
from timestep t, and their remaining ventilation duration
(VD). This ensured that the patient outcomes are stored
within the embedding. In addition, we trained a decoder to
reconstruct timestep t and the static data. This unsupervised
approach encourages the embedding to retain the patient phe-
notype. Finally, we predicted timestep t+1, a self-supervised

1A tracheostomy is a procedure designed for long term mechani-
cal ventilation of a patient.



Figure 1: Overview of our model. Only one timestep, t, is
shown for simplicity. F and S are the number of time se-
ries and static variables respectively. At timestep t, the static
variables (yellow) and preceding time series variables (grey)
and their corresponding decay indicator variables (orange,
explained under ‘Time Series’ in Data Preprocessing in the
Appendix) are given to the encoder, which produces an em-
bedding (green) for timestep t. This is then given to the
decoder networks (yellow), forecasting network (purple) and
the predictor network to obtain the four patient outcomes
(red). After training is complete, the test embeddings are
used for clustering.

approach designed to embed the patient trajectory. See Fig-
ure 1 for a schematic.

Encoder In recent years, LSTMs have been by far the most
popular model for predicting clinical outcomes and have
achieved state-of-the-art results (Harutyunyan et al. 2019;
Sheikhalishahi, Balaraman, and Osmani 2019; Rajkomar et al.
2018; Tong et al. 2022). They have also been applied to other
patient prediction tasks e.g. forecasting diagnoses and medi-
cations (Choi et al. 2015; Lipton et al. 2015), and mortality
prediction (Che et al. 2018; Harutyunyan et al. 2019; Shickel
et al. 2019). More recently, the Transformer model (Vaswani
et al. 2017) has marginally outperformed the LSTM when pre-
dicting LoS (Song et al. 2018). Rocheteau, Liò, and Hyland
(2021) showed that Temporal Pointwise Convolution (TPC)
outperformed both the LSTM and Transformer models on
mortality and LoS. Therefore, we chose to investigate these
three encoders. Details of their implementation are given in
the Appendix.

K-Medoids Clustering We used k-medoids clustering to
cluster the learned embeddings. K-medoids is similar to k-
means, except that it operates with medoids rather than cen-
troids. This means that the medoids will always be a true
observation in the data, while that is not usually the case
for centroids. The main advantage is that k-medoids are less
sensitive to outliers than k-means, which is more suitable in
this context where the data is noisy and heavily skewed2.

Both k-means and k-medoids operate on pairwise simi-
larities. We decided to use Euclidean distance rather than
cosine similarity. This is because intuitively, it is not only
the direction that the patient is moving in that matters, but
also the distance along that axis. For example, if a particular

2Preliminary experiments revealed that k-means were more
likely to produce small clusters which lay far away from the rest
of the data, because it is more affected by outliers. This made the
clustering process less reliable and reproducible.

‘direction’ represents acute decompensated heart failure, we
also care how severe the decompensation is.

We applied batch normalisation (Ioffe and Szegedy 2015)
to the embeddings, to ensure that the embedding distribution
remained within a reasonable range. The value of k (5 for all
models) was chosen using the elbow method (see ‘Number
of Clusters’ in the Appendix).

Data
We used the Amsterdam UMC database version 1.0.2 (Thoral
et al. 2021), which contains 23,106 ICU admissions from
20,109 patients admitted between 2003 and 2016. We se-
lected all of the mechanical ventilation episodes with a mini-
mum duration of 4 hours, capping the maximum duration af-
ter 21 days to reduce computational costs. This corresponded
to 14,836 episodes which occurred during 13,502 ICU admis-
sions from a cohort of 12,597 unique patients. We selected
31 time series features and 14 static features. The data were
split such that 70%, 15% and 15% were used for training, val-
idation and testing respectively. These were split by patient,
not ventilation episode, to avoid data leakage from the train
set. Further details of the data are provided in the Appendix.

Prediction Tasks
Remaining Length of Stay and Ventilation Duration We
assigned a remaining length of stay (LoS) and remaining ven-
tilation duration (VD) target to each hour of the ventilation
episode, ending when the patient dies or is extubated. We
only trained on data from the first 21 days of the ventilation
episode to protect against batches becoming overly long and
slowing down training.

The remaining LoS and VD each have a significant posi-
tive skew which makes the duration tasks more challenging.
We partly circumvent this by replacing the commonly used
mean squared error (MSE) loss with mean squared log error
(MSLE), as in Rocheteau, Liò, and Hyland (2021). We re-
ported on 2 LoS and VD metrics: mean absolute deviation
(MAD) and mean squared log error (MSLE). The MAD was
used as the primary metric in Harutyunyan et al. (2019) but
MSLE is arguably the more holistic metric (Rocheteau, Liò,
and Hyland 2021).

Mortality and Tracheostomy Unlike the duration tasks,
these tasks are static, i.e. the labels do not change during the
ventilation episode. Both tasks have significant class imbal-
ance (only 14.6% and 7.4% of patients died or received a
tracheostomy respectively). In order to encourage the model
to prioritise learning these important outcomes, we applied
class weighting to the task. We used binary crossentropy as
the loss function. We report the area under the receiver oper-
ating characteristic curve (AUROC) and the area under the
precision recall curve (AUPRC) as metrics.

Reconstruction and Forecasting As shown in Figure 1,
we use the embedding to reconstruct the timestep t, and
forecast one timestep (t+1) ahead. For the reconstruction of
t and forecast of t+ 1, we apply the mean squared error. We
also reconstruct the following static features: sex, urgency
of admission, agegroup, weightgroup, and heightgroup. The



first two are binary, and so we apply the binary crossentropy
loss function. The other three are ordered categorical (as
explained in ‘Static Features’ in the Appendix), therefore we
use the mean squared error loss function. Since these tasks
are auxiliary (we are not interested in the performance as an
outcome of the model), we reported their loss function values
as ‘metrics’ since they do not need to be interpretable.

The relative weightings of all of these tasks are given under
‘Hyperparameter Search Methodology’ in the Appendix.

Results
In this section, we highlight important performance differ-
ences between the three encoders, analyse an ablation study
on the tasks, and provide a detailed analysis of the clusters
produced by the TPC model. A deeper evaluation of the
results can be found in the discussion.

Task Performance
(a) – Full Task Setting The TPC model performs signifi-
cantly better than the LSTM and Transformer on the outcome
tasks (Table 1a), which is in line with previous findings in
MIMIC-IV and eICU (Rocheteau, Liò, and Hyland 2021).
The superiority of the TPC model is also evident in the vari-
ational and ablation experiments. Interestingly, the Trans-
former performs poorly on the binary tasks but better on the
duration tasks with respect to the LSTM. Additionally, the
LSTM performs the best on the reconstruction and forecast-
ing tasks (Table 14a). Possible reasons for these findings are
explored in the discussion.

(b) – Variational Embedding Spaces We experimented
with making the embeddings ‘variational’, by representing
the embedding as a set of means and standard deviations to
allow sampling of embedding coordinates. The rationale was
that by forcing the embedding space to be smoother, we might
improve the quality of the clustering as the distances between
patients in the embedding space become more reliable. How-
ever, this was found to universally hurt performance (Table 1b
and Table 14b) and it produced clusters which were more
homogeneous in terms of outcomes and features, which was
counter to the aim of producing clinically distinct clusters.

Ablation Study
We performed an ablation study on the tasks used to train the
representation space. The full set of results and analysis are
included in the Appendix. However, the trend is such that the
best results for all tasks (except for the duration tasks) are
achieved when all tasks are included (Table 5). The reason
for the exception is in the duration only task setting (g), is
explored further in the discussion. Overall, our ablation study
indicates that having multiple competing learning objectives
has a stabilising effect on learning the representation.

Cluster Analysis
As the best performing encoder, we have focused on
analysing the clusters produced by the TPC model. In or-
der to analyse the average differences between the patients
in each cluster, it was necessary to flatten the clustering into

one ‘primary’ cluster per patient. This was to prevent confu-
sion, since patients can enter multiple clusters during their
ICU stay (sometimes only for one or two timepoints), and
this is disproportionately true of the long stay patients. The
cluster in which each patient spent the majority of their time
in was assigned its primary cluster. If there were multiple
modes, then the mode experienced later in the sequence was
chosen. The next two sections characterise the behaviour of
the primary clusters. Subsequently, we analyse the dynamic
aspects of the clustering from multiple different perspectives.

Differences in Phenotype and Outcomes Table 2 shows
the mean outcomes for each cluster. We also analysed some
key features in the original data, to visualise differences in
patient phenotype that the model identified. The average val-
ues of key features in patients divided by primary cluster are
shown in Table 3. Broadly we can say that:

• Cluster 1 contains the sickest patients, with an average
mortality of 72.0%. They are short stay patients with low
rates of tracheostomy as most do not survive or stay long
enough to require complex respiratory weaning. Table 3
shows they are primarily ventilated with ‘mandatory’ ven-
tilation settings, meaning the machine is breathing for
the patient. Furthermore, they have evidence of mechani-
cal and functional damage to the lung parenchyma. This
is in keeping with severe respiratory distress. We could
describe this phenotype as a ‘early, life-threatening pul-
monary injury’ patient group.

• Cluster 2 display substantial mortality and severe pul-
monary dysfunction like cluster 1. However this pheno-
type is characterised by very long LoS and VD, with
consequent high rates of tracheostomy: this represents
patients who are difficult to wean from mechanical venti-
lation. This might be described as a ‘pulmonary critical
illness’ phenotype.

• Cluster 3 have the best outcomes, with short LoS and low
mortality. They are extubated without tracheostomy. This
appears to be a ‘short stay’ phenotype who require a brief
period of organ support, perhaps after significant surgery.

• Cluster 4 have relatively low mortality but high rates of
tracheostomy. Table 3 shows modest levels of respiratory
failure and good lung compliance. Thus, whilst these pa-
tients are difficult to wean from mechanical ventilation
(like cluster 2), this is due to factors that are not primar-
ily related to pulmonary pathology. We could therefore
describe them as a ‘general critical illness’ phenotype.

• Cluster 5 shows a moderate to severe group, who are not
as acutely unwell as cluster 1, but are still high-risk. From
Table 3 we see that pulmonary injury is not a prominent
feature so we could characterise these patients as ‘early,
life-threatening non-pulmonary injury’ patients.

Overall, the findings from Tables 2 and 3 show that there
are clinically meaningful differences between the clusters.
These can be visualised in Figure 2.

Medoid Analysis The medoids produced by the cluster-
ing algorithm are shown in Figure 3 and give a description
of a representative patient in each cluster. Note that each



Table 1: Encoder performance on the prediction tasks averaged over 5 independent training runs. The error margins are 95%
confidence intervals. For mortality and tracheostomy, higher AUROC and AUPRC is better; for LoS and VD, lower MAD and
MSLE is better. (a) shows the full multi-task setting as shown in Figure 1, (b) is a variational alternative to the full task setting.
Statistically significant differences are indicated by daggers († = p < 0.05, ‡ = p < 0.001). If the result is significantly better than
the comparison models*, it is highlighted in blue, if it is significantly worse it is highlighted in pink. *In (a) the statistical testing
compares the three model types, in (b) each model type is compared to its corresponding ‘non-variational’ model in table (a).

(a)

In-Hospital Mortality Tracheostomy Length of Stay Vent. Duration
Model AUROC AUPRC AUROC AUPRC MAD MSLE MAD MSLE

TPC 0.833±0.010† 0.644±0.013‡ 0.804±0.007‡ 0.507±0.020† 7.20±0.13‡ 0.359±0.010‡ 3.24±0.07‡ 0.210±0.008‡

Transformer 0.697±0.012 0.434±0.019 0.760±0.012 0.419±0.033 8.46±0.07 0.495±0.007 3.95±0.20 0.256±0.016
LSTM 0.823±0.002 0.608±0.008 0.774±0.002 0.473±0.015 9.16±0.06 0.663±0.008 5.57±0.04 0.681±0.011

(b)
TPC 0.807±0.006‡ 0.584±0.014‡ 0.775±0.008‡ 0.437±0.012‡ 9.06±0.10‡ 0.555±0.018‡ 4.42±0.03‡ 0.347±0.006‡

Transformer 0.660±0.023† 0.373±0.039† 0.714±0.020‡ 0.353±0.018† 9.42±0.27‡ 0.623±0.020‡ 4.63±0.27‡ 0.359±0.030‡

LSTM 0.803±0.004‡ 0.555±0.006‡ 0.748±0.005‡ 0.411±0.010‡ 10.2±0.1‡ 0.813±0.016‡ 5.95±0.04‡ 0.775±0.007‡

Table 2: Average outcomes by cluster ± 95% confidence intervals for the TPC model. Each patient has been classified into a
primary cluster, which is the cluster that they spent the majority of their time in. LoS and VD are shown in days.

Cluster Patients Mortality (%) Tracheostomy (%) Length of Stay Vent. Duration

1 232 72.0±5.8 1.3±1.5 3.8±0.8 2.4±0.3
2 133 34.6±8.2 38.3±8.4 30.0±3.6 21.4±2.2
3 1,292 1.9±0.7 1.5±0.7 2.8±0.3 0.7±0.0
4 347 4.0±2.1 31.1±4.9 22.0±1.8 7.4±0.9
5 227 26.0±5.7 8.4±3.6 13.0±1.6 7.2±0.9

Figure 2: t-SNE plots for the embeddings produced by the
TPC model. For these figures, 1500 random samples were se-
lected from the test set and projected. In each plot, a different
attribute has been highlighted.

medoid corresponds to a specific time-point in their ventila-
tion episode.

• The medoid patient for cluster 1 (female, age 60-69) died
4 hours after the episode shown without a tracheostomy.
Infection (high WBC) and pulmonary dysfunction are
particularly noteworthy.

• The typical medoid patient representing cluster 2 (male,
80+ years old) received a tracheostomy 19 days after
the episode shown, and was discharged at 23 days. This
patient required late as well as early mandatory ventilation
suggesting possible infectious complications (his CRP is
also high).

• The medoid patient in cluster 3 (female, age 60-69) was
discharged from hospital the day after her brief window of
ventilation. She does not display substantial physiological
derangement.

• The patient in cluster 4 (female, age 60-69) received a
tracheostomy 3 days after the sequence shown. Her lung
compliance and P/F ratio are both high, indicating good
lung function. Therefore, we can conclude that she needed
a tracheostomy for reasons other than lung injury.

• Lastly, the patient in cluster 5 (female, 80+ years old)
stayed for 9 further days in hospital before being dis-
charged. The short duration of ventilation and relatively
normal pulmonary physiology is again consistent with a
non-pulmonary phenotype.

Temporal Analysis Broadly, there are two perspectives
when evaluating the dynamic aspects of this clustering.



Table 3: Key features averaged by cluster ± 95% confidence intervals. ‘Urgency’ is a flag given to the patient at admission.
Mandatory Ventilation (MV) settings are provided in Table 13. The peak inspiratory pressure, P/F Ratio and PEEP are expressed
in mmHg. A normal P/F ratio at sea level is ≈400-500mmHg; whereas 200-300mmHg is consistent with mild ARDS (Force
et al. 2012). Lung compliance is expressed in ml/cmH2O (normal for a mechanically ventilated patient is 50-100ml/cmH2O).

Cluster Age 70+ (%) Sex (% male) Urgency (%) MV (%) Peak Insp. Pressure Lung Comp. P/F Ratio PEEP

1 52.2±6.5 59.7±6.3 63.4±6.3 68.3±0.8 25.3±0.2 32.7±0.5 217±2 10.09±0.07
2 54.1±8.6 65.8±8.1 39.1±8.4 43.2±0.4 23.2±0.1 36.8±0.3 220±1 9.97±0.03
3 39.8±2.7 69.7±2.5 14.9±1.9 38.6±0.6 16.1±0.1 58.8±0.7 260±1 6.78±0.03
4 25.9±4.6 68.4±4.9 41.5±5.3 22.1±0.4 17.8±0.1 57.5±0.4 237±1 8.19±0.28
5 40.1±6.4 69.6±5.9 43.2±6.5 41.8±0.5 20.3±0.1 47.1±0.4 243±1 8.83±0.38

Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5

Time since ICU admission (hours)

Figure 3: Raw data from each of the medoids. The data have
been standardised around the mean value for each feature.
Red means the value is high and blue means low. We can see
that each medoid largely follows the average pattern for the
cluster shown in Table 3. WBC is white blood count, CRP is
C Reactive Protein, ABP is arterial blood pressure.

One is the ‘Markovian’ perspective, where we can examine
the transition function between clusters. This is shown in
Figure 4. Unsurprisingly, this reveals that the patient is always
most likely to remain in the same cluster. However the most
common inter-cluster transitions are from cluster 5 to cluster
4, and cluster 1 to cluster 5. Note that these clusters are next
to one another and share lengthy borders in Figure 2. Most
of the patients who transition to ‘Died’ come from cluster 1,
and most of the ‘Discharged’ patients come from cluster 3.

Figure 4: A transition matrix for the TPC model, showing
the probability of entering each cluster at time t+ 1, plus the
categories ‘discharged’ or ‘died’, given their cluster at time t.

The other perspective is to look at the number of patients
in each cluster at different time points after admission, and
observe the transitions between them (Figure 5). Transitions
from cluster 3 to ‘extubated’ are very common within the first
day, but then they almost disappear by 3 days. This cannot be

Figure 5: A sankey plot showing the evolution of the cluster-
ing across time. We begin at 4 hours to allow the clustering
to stabilise at the start of the time series. At 21 days there
are still some patients without a final outcome (mostly from
cluster 2) but this is because they are ventilated for longer
than 21 days and have been right censored.

seen with the Markovian perspective in Figure 4. Cluster 2
contains patients with the longest ventilation episodes, which
can be seen by its low rate of attrition over time.

Number of Clusters per Patient Figure 6 shows that most
patients remain in only one cluster during their ventilation
episode. However, when the distribution is broken down by
primary cluster, we can see that this is heavily driven by the
behaviour of cluster 3 patients, which tend to remain in clus-
ter 3 for their entire ventilation duration (note that they tend
to have short VDs so this is not so surprising). In contrast,
clusters 2 and 5 most commonly appear alongside other clus-
ters during a single ventilation episode. This means that for
most episodes attributed to cluster 2 or 5, there are transitions
either into or out of these clusters. These are explored next.

Cluster Transitions The clusters produced by the TPC
model are remarkably stable over time, given that there is no
explicit loss incentive to constrain the representation to be-
have in this way. Figure 7 shows the distribution of timepoints
that the patients first enter their primary cluster. Clusters 2
and 3 are particularly likely to accurately assigned during the
first hour of ventilation (87% and 89% respectively), while
cluster 4 is the least likely to be identified early (64%).

Next, we investigated what we will refer to as ‘stable’ tran-
sitions between clusters. In order to be characterised as stable,



Table 4: Stable cluster transitions (origin cluster → destination cluster) with a count of ≥15, sorted by destination cluster. The
median rather than the mean time is displayed to show a more representative time of transition (as there is positive skew).

Transition Count Median Time Mortality (%) Tracheostomy (%) Urgency (%) VD LoS

3→1 17 3 76.5 0.0 47.1 0.5 0.7
5→1 29 16 51.7 10.3 55.2 4.3 5.3

1→3 28 11 10.7 0.0 67.9 1.0 2.6
5→3 46 9 15.2 4.3 41.3 1.2 6.5

2→4 28 17 10.7 21.4 42.9 6.2 12.8
5→4 27 10 11.1 7.4 48.1 3.4 9.1

1→5 25 3 44.0 4.0 68.0 3.9 6.5
3→5 15 4 13.3 13.3 53.3 1.9 4.6
4→5 15 56 26.7 26.7 46.7 6.6 11.5

Figure 6: Distribution of the number of clusters that the pa-
tient enters during their ventilation episode, separated by
primary cluster (shown by the colour key). For example, clus-
ter 3 (purple) mainly appears on its own i.e. the patient starts
the episode in cluster 3 and remains in cluster 3 for the whole
duration, whereas cluster 5 (red) rarely appears on its own.

the origin cluster needed to remain stable in the 5 hours pre-
ceding the transition, and the patient was not permitted to
re-enter the origin cluster for 5 hours following the transition.
This was primarily to screen out patients who were at the
boundary between two clusters, continually crossing back
and forth but not representing a true transition from one to
the other. Before screening, there were 22,036 cluster tran-
sitions, corresponding to 870 separate ventilation episodes
(39% of the total in the test set). Of these transitions, only 291
represented stable movement between clusters. We further
removed any transitions between two clusters that had fewer
than 15 transition examples, as this would be insufficient to
analyse. The remaining 230 transitions are shown in Table 4.

Firstly, it is noteworthy that the outcomes reflect the desti-
nation cluster, not the origin cluster. The exception to this is
the ‘urgency’ column, which is not an outcome, but a label
assigned at admission and hence is more likely to reflect the
origin cluster (although it is worth mentioning that the origin
cluster is not necessarily the cluster at admission).

Cluster 5 stands out as being disproportionately involved
in inter-cluster transitions. Of these, the most common is
5→3, which occurs when the model overestimates the risk
to the patient early on in the ventilation episode. Not shown

Figure 7: Percentage of patients who enter their primary
cluster, by time since the start of the ventilation episode.

in Figure 4, is that the average predicted risk of death drops
from 56.4% 5 hours prior to the transition, to 41.7% at the
point of transition. There is also a corresponding reduction
in tracheostomy risk (-13%), LoS (-17.1% after adjustment3)
and VD (-26.4% after adjustment) as predicted by the model,
and dramatic improvements in physiological parameters such
as lung compliance (+35%) and P/F ratio (+15%).

Another interesting transition is 3→1, which happens
when the model initially believes the patient to be relatively
healthy, but then quickly re-adjusts to predict poor outcomes.
Looking in more detail at the raw data, we discovered that
these patients are younger (only 23.5% are 70+), which could
explain why the model was initially optimistic and why the
deterioration is so rapid4. We also observed a deterioration in
the lung compliance (-26.3%) and P/F ratios (-12.8%), and a
change in the ventilator settings – namely higher PEEP and
peak inspiratory pressure and lower tidal volumes – reflect-
ing a drop in lung compliance of the patients. Most of these
patients died within 12 hours of the transition to cluster 1.

Reliability We investigated the reproducibility of these phe-
notypes. We chose to analyse the clusters in the following
settings: i) alternative encoder models, ii) retraining the TPC

3There is a 5 hour gap between these predictions, therefore this
time difference needs to be removed from the first prediction.

4This is because younger patients can mask a problem by com-
pensating deceptively well, until they reach a point where the home-
ostatic mechanisms can no longer cope.



model with different random seeds and iii) varying the value
of k. The clusters were found to be surprisingly stable, with
key features of the extracted phenotypes remaining similar
between models. With increasing value of k, we noticed that
rather than completely rearranging the position of the clus-
ters, increasing k progressively subdivides existing clusters,
hinting that the clusters are hierarchically organised (more in
the discussion). The full analysis is included in the Appendix.

Discussion
We evaluated the use of TPC model, trained using supervised,
unsupervised and self-supervised learning techniques, for the
purposes of phenotype discovery in mechanically ventilated
patients. We will discuss the most important findings in turn.

Firstly, we reaffirmed that the TPC model performs better
than alternative encoders on EHR data for patient outcome
prediction. This time on the Amsterdam UMC database (Tho-
ral et al. 2021), and with added tasks.

Secondly, we found that the Transformer outperformed
LSTM on LoS and VD, but performed much worse on the
mortality task, and slightly worse on the tracheostomy task.
This may be because the task weighting was more favourou-
ble to the LSTM and TPC models, whereas the Transformer
would have benefited from greater weighting towards the bi-
nary tasks. Another possibility is that the binary tasks benefit
from biases in the LSTM and TPC encoders, because these
models naturally emphasise recent timepoints (and these are
especially important for solving the mortality task). As for the
reason that the Transformer performs better on tracheostomy
than mortality, it could be because there is positive correlation
between the LoS, VD and tracheostomy tasks. Solving the
duration tasks makes the tracheostomy task easier, whereas
the relation to mortality is more complex (Figure 2).

To briefly comment on the reconstruction results in Ta-
ble 14 in the Appendix; it may seem surprising that the LSTM
model performs best on the reconstruction and forecasting
tasks. However, this could be explained if the LSTM is cre-
ating simpler ‘lower level’ representations that are easier to
translate back to the original data with the decoder networks.

Thirdly, Table 5 reveals a general trend that the more tasks
that are added, the better results across all the tasks, with
particular benefits to the tracheostomy task. The exception
to this was the duration only setting. There are two possible
explanations for the discrepancy:
1. The weighting of the duration task was not sufficient.
2. The tracheostomy task (but not mortality) reduces the

performance on the duration tasks.
The former does not seem likely, because the Transformer is
probably over-weighting the duration tasks, and yet, it fol-
lows the same trend as the LSTM and TPC. The latter may
appear to be counter-intuitive, because the duration tasks are
correlated with tracheostomy. Usually this is an advantage
of multitask learning, because it enhances the signal:noise
ratio when certain types of noise only apply to one task. How-
ever, looking closely at Figure 2, we can see that there is an
area of patients near the bottom of the figure, in cluster 5.
These patients have long VD and LoS but have been sepa-
rated from the other long stay patients in clusters 2 and 4. The

separation can be attributed to these patients never receiv-
ing tracheostomies, therefore the tracheostomy task forces
the representation space to separate these groups when they
would be otherwise be aligned. Given the simple nature of
the predictor networks, this may harm the performance on
the duration tasks because the predictor cannot effectively
map these patients to appropriately long LoS. This theory
could be formally tested by accompanying the duration tasks
with the mortality task only.

Finally, regarding the repeatability of the clustering, we
demonstrated that key aspects of the learned representations
(both of different encoders and TPC instances) are consis-
tently recognised. The separation on other traits, especially
distinguishing the sickest patients from the moderately ill,
was more malleable. This suggests that perhaps there is not a
well defined distinction between these, but rather a scale of
deterioration, through which an arbitrary line can be drawn.

Limitations and Future Work
Hierarchical Clustering It is evident that certain clusters
are more related than others. A tree based hierarchy of clus-
ters seems more natural than a flat structure. We are par-
ticularly interested in modifying an approach for genetics
data (Patel et al. 2022; Chami et al. 2020; Corso et al. 2021),
and are hoping to apply it to the ICU.

Contrastive Learning We are investigating the use of
contrastive learning to regularise the embedding space (e.g.
Yèche et al. (2021)). Currently, there is no explicit loss to
enforce relative positioning of the embeddings. Despite this,
we have empirically found the clusters to be very stable, both
temporally and to encoder type. This is likely to be because
our predictor and decoder networks are very simple, meaning
that the embedding space does not have the freedom to model
similar patient trajectories (which should be in the same clus-
ter) in disparate parts of the embedding space. Nevertheless,
contrastive learning could provide further regularisation.

Generalisability While we have shown that the clusters
are surprisingly stable, repeating the work on another dataset
(e.g. MIMIC-IV or eICU) would strengthen this assessment.

Summary
While we acknowledge important limitations in our work, we
have shown that:

1. The TPC model outperforms alternative encoders on pa-
tient outcome prediction tasks.

2. We can generate clinically meaningful and interpretable
clusters using this technique.

3. The phenotypes are similar across choices of encoder and
number of clusters.

4. The cluster assignment is remarkably stable over time, and
membership is determined early on. This is particularly
encouraging as a substrate for future intervention studies,
because they rely on phenotyping before any intervention.

5. Stable cluster transitions do occur but they are infrequent.
Studying these transitions with a view towards understand-
ing the causes is an important avenue for future work.
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Further Analyses
Ablation Study
We performed an ablation study on the tasks used to train
the representation space. The results are shown in Table 5.
Firstly, we see that the best results for all tasks (except for the
duration tasks) are achieved in the full multi-task setting. Not
a single metric improves in the other ablation settings, and yet
at least one metric showed a deterioration in performance (the
exception in task setting (g) is discussed below). Overall this
indicates that having multiple competing learning objectives
has a stabilising effect on learning the representation.

(c) – No Forecasting Experiment (c) included all the tasks
except forecasting one timestep ahead. When we compare ex-
periment (c) to (a), we see that the results are mostly similar,
but there is a consistent decrease in performance, which is sta-
tistically significant at the p<0.05 level on the tracheostomy
task (AUPRC in the TPC model and AUROC in the Trans-
former model). On the reconstruction task, again the perfor-
mance is similar but statistically worse in the last timestep
reconstruction in the LSTM model. This means that the fore-
casting task is contributing slightly to the performance in (a),
but the benefit is small.

(d) – No Reconstruction Experiment (d) removes both the
timestep t reconstruction and the static data reconstruction
tasks, but keeps the forecasting task. The effect size is larger
than in (c), but again is only statistically significant on the tra-
cheostomy task. The forecasting task performs significantly
worse in the Transformer and LSTM models without the
reconstruction.

(e) – Prediction Tasks Only Experiment (e) includes the
binary and duration prediction tasks, but no reconstruction or
forecasting. The performance again deteriorates, particularly
on the tracheostomy task, we also start to see a more notice-
able deterioration in the duration tasks, although this is not
yet statistically significant.

(f) – Binary Tasks Only Experiment (f) follows the trend
of worsening performance as tasks are removed. This means
that the mortality and tracheostomy tasks consistently benefit
from supplementary tasks which help to distinguish signal
from noise.

(g) – Duration Tasks Only Experiment (g) shows unex-
pected results; all of the models return better results when
only predicting LoS and VD. This is not what has been ob-
served previously in multitask settings ((Rocheteau, Liò, and
Hyland 2021; Harutyunyan et al. 2019)). This is explored
further in the discussion.

However, overall the trend is such that the more tasks that
are included, the better the average results across tasks.

Cluster Reliability
Choice of Encoder Figure 8 compares the cluster assign-
ments using different encoder models. It is encouraging that
there is a strong cohesion between some of the clusters, mean-
ing that the models are picking out genuine and consistent
patterns in the data.

Figure 8: A comparison of the cluster assignments produced
by different encoders. We can see that there is strong cohesion
between some of the clusters. For example, cluster 3 appears
to be the same in all three models.

Figure 9: A comparison of the cluster assignments produced
by TPC models which have been trained with different ran-
dom seeds.

If we examine the TPC/LSTM comparison (far left in
Figure 8) we can see that clusters 2, 3 and 4 in the TPC cor-
respond to 5, 3 and 1 respectively in the LSTM. In addition,
clusters 1 and 5 (TPC) imperfectly map to 2 and 4 (LSTM)
– the main difference being that some additional patients in
cluster 5 in the TPC map to cluster 2 in the LSTM. This
means that the k-medoids algorithm has placed a different
boundary between these groups in the clustering process.
Looking back to Figure 2, clusters 1 and 5 are revealed to be
neighbours – in fact, cluster 5 appears to envelope cluster 1,
suggesting that 1 is a sub-cluster of 5. This is also consistent
with the clinical picture shown in Table 2, where the main
difference is that cluster 1 appear to have acute pulmonary
dysfunction, most likely in addition to other organ failures.
Therefore, the explanation for this discrepancy is that the
LSTM has a more generous threshold than the TPC for in-
clusion in its highest risk ‘early, life-threatening pulmonary
injury’ category (cluster 2).

In the TPC/Transformer comparison, the clusters largely
correlate, except that cluster 5 patients in the TPC have been
placed into cluster 4 in the Transformer. Further investigation
revealed these to be patients with increased risk of receiving
a tracheostomy (i.e. the patients which lay closest to the
decision boundary between the clusters).

The LSTM/Transformer comparison mirrors some of the
correlations in TPC/LSTM but the mapping is less precise.
This could be because the models do not perform as well,
making the representations less reliable. It could also be
because the models have different affinities for the various
tasks, creating divergent biases in the representation space.

It is worth noting that in all three models, cluster 3 is the
most distinct. This is unsurprising because it corresponds
to patients whose physiology is closest to ‘normal’. There-
fore this group is the most homogeneous and can always be
identified easily.

Retraining TPC We retrained the TPC model 5 times with
different initialisation generated by different random seeds



Table 5: Prediction task results for the task ablation study. The full task setting from Table 1a has been repeated for ease of
comparison. Various task ablations are compared to (a): (c) includes all tasks except for the forecasting task, (d) includes all
tasks except for the reconstruction tasks, (e) includes only the prediction tasks, (f) is only the binary tasks, and (g) is only the
duration tasks. The colour scheme, metrics and statistical test comparisons are explained in the legend to Table 1.

(a)

In-Hospital Mortality Tracheostomy Length of Stay Vent. Duration
Model AUROC AUPRC AUROC AUPRC MAD MSLE MAD MSLE

TPC 0.833±0.010 0.644±0.013 0.804±0.007 0.507±0.020 7.20±0.13 0.359±0.010 3.24±0.07 0.210±0.008
Transformer 0.697±0.012 0.434±0.019 0.760±0.012 0.419±0.033 8.46±0.07 0.495±0.007 3.95±0.20 0.256±0.016
LSTM 0.823±0.002 0.608±0.008 0.774±0.002 0.473±0.015 9.16±0.06 0.663±0.008 5.57±0.04 0.681±0.011

(c)
TPC 0.831±0.006 0.645±0.009 0.796±0.006 0.499±0.016† 7.24±0.12 0.360±0.005 3.26±0.07 0.210±0.004
Transformer 0.675±0.052 0.399±0.079 0.743±0.011† 0.406±0.022 8.44±0.29 0.492±0.024 3.95±0.25 0.251±0.026
LSTM 0.820±0.003 0.608±0.003 0.773±0.005 0.473±0.014 9.16±0.04 0.663±0.005 5.60±0.05 0.685±0.010

(d)
TPC 0.832±0.005 0.645±0.016 0.796±0.007 0.483±0.020† 7.28±0.09 0.362±0.007 3.29±0.06 0.213±0.002
Transformer 0.698±0.017 0.431±0.041 0.743±0.008† 0.391±0.008 8.44±0.23 0.492±0.019 3.91±0.39 0.253±0.033
LSTM 0.820±0.003 0.608±0.007 0.773±0.002 0.464±0.011 9.19±0.04 0.669±0.006 5.59±0.03 0.688±0.010

(e)
TPC 0.828±0.004 0.643±0.010 0.798±0.005 0.480±0.020† 7.38±0.20 0.367±0.020 3.24±0.07 0.212±0.012
Transformer 0.676±0.019† 0.410±0.034 0.736±0.021† 0.383±0.026 8.67±0.27 0.509±0.024 4.12±0.22 0.268±0.017
LSTM 0.819±0.005 0.604±0.013 0.773±0.002 0.475±0.008 9.20±0.04 0.669±0.008 5.61±0.04 0.691±0.012

(f)
TPC 0.823±0.006† 0.626±0.014† 0.793±0.002† 0.477±0.017† - - - -
Transformer 0.669±0.036 0.373±0.048† 0.737±0.021† 0.400±0.038 - - - -
LSTM 0.817±0.003† 0.597±0.007† 0.767±0.003‡ 0.458±0.016 - - - -

(g)
TPC - - - - 6.99±0.10† 0.341±0.007† 3.08±0.09† 0.180±0.004‡

Transformer - - - - 8.18±0.12‡ 0.472±0.012† 3.68±0.18† 0.224±0.009†

LSTM - - - - 9.05±0.05† 0.644±0.006‡ 5.55±0.01 0.668±0.003†

and compared the resulting clusters to the original (Figure 9).
Overall, there is strong cohesion between the models, but
sometimes there are shifts in the boundaries between neigh-
bouring clusters in Figure 2. Especially between cluster 5
(moderate-severe) and cluster 1 (severe), where some models
(TPC 2, TPC 3, TPC 4) allow patients in cluster 5 to enter
their ‘cluster 1’ equivalent. Nevertheless, very distinct pheno-
types are almost never mixed e.g. clusters 2 and 3, 1 and 4, or
1 and 3 (as defined by the TPC 1 model). As in the encoder
comparisons, cluster 3 is always well characterised.

Number of Clusters The value of k was determined using
the elbow method. In Figure 10, we show how the clusters
would appear with increasing value of k. What is most strik-
ing is that each time a cluster is added, the new cluster either
inserts itself within an existing cluster, or it appears at the
intersection between existing clusters. For example, as we
move from 2 to 3 clusters, the new cluster 3 is almost com-
pletely contained within the old cluster 1. This pattern of
sub-dividing an existing cluster generally continues until we
reach 6 and 7 clusters, when the new cluster inserts itself
at the boundary between two or more old clusters. In other
words, increasing the value of k does not completely shift
the position of all of the clusters, but rather it carefully subdi-
vides them. The importance of this behaviour with increasing
value of k is discussed in the next section.

Figure 10: Cluster labels with increasing number of clusters
(from k=2 to k=7).

Data Preprocessing
Of the 14,836 episodes extracted from the Amsterdam data,
13,783 ended in extubation or death of the patient, 648 ended
with a tracheotomy procedure occurring within 21 days, 399
patients were still on ventilation at 21 days, and 6 patients
were converted to a non-invasive ventilation setting. Table 6
shows a summary of the cohort.

Static Features
We extracted 14 static features from the admissions table
(Table 7). Discrete and continuous variables were scaled to
the interval [-1, 1], using the 5th and 95th percentiles as
the boundaries, and absolute cut offs were placed at [-4, 4].



Table 6: Cohort summary for the Amsterdam UMC database.
‘Remaining LoS’ refers to the remaining duration in the hos-
pital after the start of the ventilation episode.

Number of ventilation episodes 14,836
Train 10,395
Validation 2,230
Test 2,208

Sex (% male) 66.6%
Total LoS in days (mean) 8.26
Total LoS in days (median) 2.13
Remaining LoS in days (mean) 7.26
Remaining LoS in days (median) 2.01
VD in days (mean) 3.95
VD in days (median) 0.83
In-hospital mortality 14.6%
Tracheostomy patients 7.4%
‘Urgent’ patients 28.1%

Number of input features 45
Time series 31
Static 14

Binary variables were coded as 1 and 0. Categorical variables
were converted to one-hot encodings, with the exception of
‘agegroup’, ‘heightgroup’ and ‘weightgroup’. These appear
as ordered categories e.g. [18-39, 40-49, 50-59, 60-69, 70-
79, 80+] for agegroup. We converted these to an ordered
set centred on 0, [-1, -0.6, -0.2, 0.2, 0.6, 1], to preserve the
quantitative significance of each category.

Table 7: Static features used in the model. ‘Null Height’
and ‘Null Weight’ were added as indicator variables to indi-
cate when the height or weight were missing and have been
imputed with the mean value. We added the variables ‘Ad-
mission Count’ and ‘Ventilation Episode Count’ based on
previous admissions and ventilation episodes.

Feature Type Source Table

Sex Binary admissions
Age Group Discrete admissions
Height Group Discrete admissions
Weight Group Discrete admissions
Admission Count Discrete
Ventilation Episode Count Discrete
Urgency Binary admissions
Previous Ward Categorical admissions
Specific Location in ICU Categorical admissions
Physician Speciality Categorical admissions
Weight Source Categorical admissions
Height Source Categorical admissions
Null Height Binary
Null Weight Binary

Time Series
For each ventilation episode, we selected 31 time series vari-
ables, mostly from the numericitems table (these are shown
in Table 12). We used a semi-automatic process for feature

selection. To be included, the variable had to be present in
at least 25% of patient stays, and these were further nar-
rowed down with advice from Dr Ari Ercole. We extracted
‘diagnosissubgroups’ using a query from the AmsterdamUM-
Cdb github repository (Thoral, Driessen, and Dam 2020) and
ventilator settings from listitems. The ventilator settings clas-
sification is given in Table 13. We engineered the features
‘lung compliance’ and ‘P/F ratio’ because they are clinically
important, and we have previously noted that neural networks
are unreliable when performing divisions. We calculated lung
compliance as:

Lung Compliance =
0.73556× Expiratory Tidal Volume
Peak Inspiratory Pressure − PEEP

(1)
where 0.73556 is a conversion factor to convert lung compli-
ance to its usual unit of ml/cmH2O. We calculated the P/F
ratio as:

P/F Ratio =
PaO2

FiO2
(2)

where FiO2 is expressed as a fraction rather than a percentage.
The time series variables were standardised in the same

manner as the static features. To help the model cope with
this missing data, we re-sampled according to one-hour in-
tervals and forward-filled the data over the gaps. Note that
this is more realistic than interpolation as the clinician would
only have the most recent value. After forward-filling was
complete, any data recorded before the ICU admission was
removed.

Decay Indicators With the forward-filling method alone,
the model would not know whether a particular data point
was genuine or whether the data had been imputed. This is
important because the sampling itself may be informative,
for example a deteriorating patient may have more frequent
investigations. To mitigate for this, we added ‘decay indica-
tors’ to specify where the data had been imputed, and if it
had, how long it had been since the genuine measurement
was taken. The decay was calculated as 0.8j , where j is the
time since the last recording. This is similar in spirit to the
masking used by Rocheteau, Liò, and Hyland (2021); Che
et al. (2018).

Additional Implementation Details
We tested three different encoder models to generate the em-
beddings. They were all trained as follows. Firstly, the time
series are given to the encoder network which processes and
then combines them with the static features. These are then
passed through a small two-layer pointwise convolution to
generate the embeddings (shown in green on Figure 1). These
are given to a predictor network, a reconstruction network
and a forecasting network.

The predictor network is one layer, with four outputs, corre-
sponding to the four outcome tasks – tracheostomy, mortality,
LoS and VD. For the binary predictions, we apply a sigmoid
activation function to generate a prediction between 0 and
1 and for the duration predictions we apply an exponential
function. This is intended to help to circumvent a common
issue seen in previous models (e.g. Harutyunyan et al. (2019),



as they struggle to produce predictions over the full range of
durations when the data is very skewed) because it effectively
allows the upstream network to model log(LoS) instead of
LoS. The log(LoS) distribution is much closer to a Gaussian
distribution than the remaining LoS. No activation function
is placed on the outputs of the forecasting or time series re-
construction networks, because the variables are continuous.
Batch normalisation (Ioffe and Szegedy 2015) and dropout
(Srivastava et al. 2014) is used to regularise the model.

The LSTM (Hochreiter and Schmidhuber 1997) is very
similar to the one used in a recent eICU benchmark paper
including LoS prediction (Sheikhalishahi, Balaraman, and
Osmani 2019). The Transformer (Vaswani et al. 2017) is very
similar to its original implementation except that we added
temporal masking to impose causality5 (see ‘Hyperparameter
Search Methodology’ for their hyperparameters).

TPC Model Architecture
We use a Temporal Pointwise Convolution (TPC) (Rocheteau,
Liò, and Hyland 2020) network as one of our encoders. This
is a model that takes advantage of both temporal convolution
(to analyse trends) and pointwise convolution (to look for
any important variable interactions). It is inspired by the way
that clinicians would approach an assessment of a patient e.g.
they might check how the respiratory rate is changing over
time, and they may also look at combination features e.g. the
PaO2/FiO2 ratio. The components of the network are briefly
explained below.

Temporal Convolution Temporal Convolution Networks
(TCNs) (van den Oord et al. 2016; Kalchbrenner et al. 2016)
are models that convolve over the time dimension. The TPC
model uses stacked TCNs to extract temporal trends in the
data. Unlike most implementations, it does not share weights
across features i.e. weight sharing is only across time. This
is because the features in a typical EHR differ sufficiently in
their temporal characteristics and warrant specialised process-
ing. In TCNs, the receptive field sizes6 are highly adaptable.
They can be increased by using greater dilation, larger kernel
sizes or by stacking more layers. By contrast, recurrent neural
networks such as LSTM can only process one time step at
a time, and Transformers have a weaker sense of temporal
structure e.g. periodicity, which is central to understanding
time series in the EHR.

Pointwise Convolution Pointwise (or 1x1) convolution
(Lin, Chen, and Yan 2013) is typically used to reduce the
dimensions in an input (Szegedy et al. 2014). However in the
TPC model it is used to compute interaction features from
the existing feature set at each timepoint.

Skip Connections Skip connections (He et al. 2015) allow
each layer to see the original data and the pointwise outputs
from previous layers. This helps the network to cope with
infrequently sampled data.

5The processing of each timepoint can only depend on current
or earlier positions in the sequence.

6‘Receptive field’ refers to the width of the filter. For TCNs this
corresponds to a timespan.
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Figure 11: One layer of the TPC model. F is the number
of time series features. T is the time series length. Y is the
number of temporal channels per feature in the previous TPC
layer (except for the first layer where Y is 1; decay indicators
(explained under ‘Time Series’ in ) make up this channel).
Zt−1 is the cumulative number of pointwise outputs from all
previous TPC layers. Y∗ and Z∗ are the number of tempo-
ral channels per feature and pointwise outputs respectively
in the current TPC layer. Zt = Zt−1+ Z∗. The differently
coloured temporal filters indicate independent parameters. d
is the temporal dilation, k is the kernel size. Decay indicator
features () are shown in orange, f static features are shown
in yellow. The skip connections consist of F original features
(grey) and Zt+1 pointwise outputs (light blue). We ignore the
batch dimension for clarity.

Temporal Pointwise Convolution The full model com-
bines temporal and pointwise convolution in parallel. Fig-
ure 11 shows just one layer, however our implementation has
6 layers stacked sequentially (Table 8). With each successive
TPC layer, the temporal dilation is increased by 1.



Figure 12: Overview of the encoding framework. F, T, Y∗,
Z∗, Zt and f are defined in the caption to Figure 11. The
original time series (grey) along with the decay indicators
(orange) (explained under ‘Time Series’) are processed by n
TPC layers. If a baseline model were used instead of TPC,
the time series output dimensions would be M x T, where M
is the LSTM hidden size or dmodel in the Transformer (this is
in place of the light blue and grey output in the TPC model).
The diagnoses, d, are embedded by a diagnosis encoder –
a single fully connected layer of size D. The time series
(blue and grey), diagnosis embedding (purple) and static
features (yellow) are concatenated along the feature axis, and
a two-layer pointwise convolution is applied to obtain the
embeddings (green).

Hyperparameter Search Methodology
All the encoders have hyperparameters that can broadly be
split into three categories: time series specific, non-time se-
ries specific and global parameters (shown in more detail in
Tables 8, 9 and 10). The hyperparameter search ranges have
been included in Table 11. We ran 10 hyperparameter trials
to optimise the remaining parameters for the TPC, LSTM,
and Transformer models. The number of epochs was deter-
mined by selecting the best validation performance from a
model trained over 300 epochs (early stopping was then used
for each individual model). All deep learning methods were
implemented in PyTorch (Paszke et al. 2019) using PyTorch
Lightning (Falcon 2019) and were optimised using Adam
(Kingma and Ba 2014).

We also optimised for the weighting between the tasks. We
simply multiplied the loss for each component by a hyperpa-
rameter. The best overall learning curves were found when
the task weighting coefficients were: 0.5 for the duration

tasks, 1 for the binary tasks, 0.1 for time series reconstruction
and forecasting, and 0.002 for binary feature reconstruction.
The reason for the small weighting for binary feature recon-
struction was that the task appeared very easy for the models,
especially predicting the sex of the patient, and so the repre-
sentation became dominated with this at the expense of the
other tasks.

Number of Clusters
The value of k was determined using an average value from
the elbow method across various encoders. Specifically we
looked for the point at which the Within Cluster Sum of
Squares (WCSS) started to tail off with increasing values of
k. Figure 13 shows an example elbow plot. We selected the
value 5 across all the models.

Figure 13: Elbow plot for the TPC model.



Table 8: The TPC model has 11 hyperparameters (Main Dropout and Batch Normalisation have been repeated in the table because
they apply to multiple parts of the model). We allowed the model to optimise a custom dropout rate for the temporal convolutions
because they have fewer parameters and might need less regularisation than the rest of the model. The best hyperparameter
values are shown in brackets. Hyperparameters marked with * were fixed across all of the models.

TPC Specific
Temporal Specific Pointwise Specific
Temp. Channels (6) Point. Channels (14)
Temp. Dropout (0.05) Main Dropout* (0.05)
Kernel Size (3)

Batch Normalisation* (True)
No. TPC Layers (6)

Non-TPC Specific Global Parameters
Batch Normalisation* (True) Batch Size (128)
Main Dropout* (0.05) Learning Rate (0.0001)
Final FC Layer Size* (16) Embedding Size (128)

Table 9: The LSTM model has 8 hyperparameters. We allowed the model to optimise a custom dropout rate for the LSTM layers.
Note that batch normalisation is not applicable to the LSTM layers. The best hyperparameter values are shown in brackets.
Hyperparameters marked with * were fixed across all of the models.

LSTM Specific Non-LSTM Specific Global Parameters
Hidden State (128) Batch Normalisation* (True) Batch Size (128)
LSTM Dropout (0.05) Main Dropout* (0.05) Learning Rate (0.0001)
No. LSTM Layers (2) Embedding Size (128)

Table 10: The Transformer model has 9 hyperparameters. Note that batch normalisation is not applicable to the Transformer layers
(the default implementation uses layer normalisation). The best hyperparameter values are shown in brackets. Hyperparameters
marked with * were fixed across all of the models.

Transformer Specific Non-Transformer Specific Global Parameters
No. Attention Heads (2) Batch Normalisation* (True) Batch Size (128)
Feedforward Size (256) Main Dropout* (0.05) Learning Rate (0.0001)
dmodel (16)
Transformer Dropout (0.05)
No. Transformer Layers (6)



Table 11: Hyperparameter Search Ranges. We took a random sample from each range and converted to an integer if necessary.
For the kernel sizes (not shown in the table) the range was dependent on the number of TPC layers selected (because large kernel
sizes combined with a large number of layers can have an inappropriately wide range as the dilation factor increases per layer).
In general the range of kernel sizes was around 2-5 (but it could be up to 10 for small numbers of TPC Layers).

Hyperparameter Lower Upper Scale
Batch Size 4 512 log2
Dropout Rate (all) 0 0.5 Linear
Learning Rate 0.0001 0.01 log10
Batch Normalisation True False
Final FC Layer Size 16 64 log2
Point. Channels 4 16 log2
Temp. Channels 4 16 log2
LSTM Hidden State Size 16 256 log2
dmodel 16 256 log2
Feedforward Size 16 256 log2
No. Attention Heads 2 16 log2
No. TPC Layers 1 12 Linear
No. LSTM Layers 1 4 Linear
No. Transformer Layers 1 10 Linear

Table 12: Time Series features. The features which do not have a source table were calculated from the other features available in
the data. ‘Mandatory Ventilation’ and ‘Patient Triggered’ were calculated from the ventilator settings as outlined in Table 13.

Feature Type Source Table

ABP gemiddeld Continuous numericitems
Ademfreq. Continuous numericitems
Alb.Chem (bloed) Continuous numericitems
Bilirubine (bloed) Continuous numericitems
CRP (bloed) Continuous numericitems
End tidal CO2 concentratie Continuous numericitems
Exp. tidal volume Continuous numericitems
Glucose (bloed) Continuous numericitems
Hartfrequentie Continuous numericitems
Ht (bloed) Continuous numericitems
Kalium (bloed) Continuous numericitems
Kreatinine (bloed) Continuous numericitems
Lactaat (bloed) Continuous numericitems
Leuco’s (bloed) Continuous numericitems
Natrium (bloed) Continuous numericitems
O2 concentratie Continuous numericitems
P/F ratio Continuous
PC Continuous numericitems
PEEP (Set) Continuous numericitems
PO2 (bloed) Continuous numericitems
Piek druk Continuous numericitems
Saturatie (Monitor) Continuous numericitems
Temp. Continuous numericitems
Thrombo’s (bloed) Continuous numericitems
TroponineT (bloed) Continuous numericitems
UrineCAD Continuous numericitems
lung compliance Continuous
mandatory ventilation Binary
pCO2 (bloed) Continuous numericitems
pH (bloed) Continuous numericitems
patient triggered Binary
Time in the ICU Discrete



Table 13: Ventilator Settings Classification, used to produce the features ‘Patient Triggered’ and ‘Mandatory Ventilation’ in
Table 12.

Patient Triggered Ventilation Mandatory Ventilation

Bi Vente MMV
NAVA VC
PRVC PC
PRVC (trig) Pressure Controled
PS/CPAP (trig) PC (No trig)
SIMV(PC)+PS PRVC (No trig)
SIMV(VC)+PS VC (No trig)
VC (trig) CPPV
VS IPPV
SIMV_ASB SIMV
CPAP BIPAP
BIPAP-SIMV/ASB
MMV_ASB
MMV/ASB
ASB
IPPV/ASSIST
CPPV/ASSIST
CPPV_Assist
IPPV_Assist
SIMV/ASB
CPAP_ASB
PS/CPAP
BIPAP/ASB
CPAP/ASB

Table 14: Losses for the reconstruction tasks and forecasting task averaged over 5 independent training runs. The error margins
are 95% confidence intervals. See ‘Reconstruction and Forecasting’ for explanations of the losses shown. The meaning of (a),
(b), the colour scheme and statistical tests are defined in the legend to Table 1.

(a)

Model Reconstruction Tasks Forecasting
Last Timestep Static (Binary) Static (Other)

TPC 0.334±0.004 0.013±0.000 0.210±0.038 0.334±0.005
Transformer 0.351±0.005 0.013±0.000 0.354±0.005 0.347±0.001
LSTM 0.297±0.006‡ 0.012±0.001† 0.078±0.010‡ 0.299±0.004‡

(b)
TPC 0.345±0.002‡ 0.013±0.000 0.332±0.006‡ 0.345±0.003‡

Transformer 0.355±0.006 0.013±0.000† 0.356±0.001 0.353±0.005†

LSTM 0.322±0.003‡ 0.012±0.000 0.266±0.004‡ 0.323±0.003‡

Table 15: Reconstruction and forecasting losses for the task ablation study. The full task setting from Table 14(a) has been
repeated for ease of comparison. The following task ablations are compared to (a): (c) includes all tasks except for the forecasting
task, (d) includes all tasks except for the reconstruction tasks. The colour scheme and statistical test comparisons are explained in
the legend to Table 1.

(a)

Model Reconstruction Tasks Forecasting
Last Timestep Static (Binary) Static (Other)

TPC 0.334±0.004 0.013±0.000 0.210±0.038 0.334±0.005
Transformer 0.351±0.005 0.013±0.000 0.354±0.005 0.347±0.001
LSTM 0.297±0.006 0.012±0.001 0.078±0.010 0.299±0.004

(c)
TPC 0.334±0.004 0.012±0.000 0.198±0.020 -
Transformer 0.349±0.007 0.013±0.000 0.358±0.007 -
LSTM 0.305±0.003† 0.011±0.000 0.085±0.010 -

(d)
TPC - - - 0.339±0.006
Transformer - - - 0.355±0.007†

LSTM - - - 0.309±0.006†


