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Abstract

We define a new subclass of the restless multi-armed ban-
dit framework, that we name Adherence Bandits, designed to
capture the dynamics prevalent in many public health inter-
vention problems. We discuss key properties of Adherence
Bandits, their real-world motivations, how structures lead to
both technical and computational advantages, and natural ex-
tensions that have been or can be made to the subclass. We
summarize key research works that have contributed to the
growing sub-area and finish by highlighting future directions
of research.

Introduction
Sequential resource allocation crops up in a multitude of
real world settings. Often, the disparity between available re-
sources and the total number of recipients can be high. Some
common examples are cancer screening for a high risk popu-
lation (Lee 2016), fighting wildfires (Chan, Tran-Thanh, and
Viswanathan 2021) and communication networks (Blasco
and Gündüz 2015). Restless multi-armed bandits (RMABs)
(Whittle 1988) are a widely adopted technique to model
such scenarios. We focus on a growing conceptual class
of RMAB that emphasizes keeping the resource recipient
(arms) in a good state, accruing rewards for all arms kept in
that state. That is, ‘Adhering’ to the good state and prevent-
ing ‘dropout’ to the bad state is the hallmark of these prob-
lems. Sticking to an education training regime, and habit
formation in medication adherence (Killian et al. 2019) are
some examples. Problems in the public health domain are
especially of this nature and have been studied in detail. In
this work, we propose Adherence RMABs as a subclass of
RMABs designed to capture these common dynamics.

Restless multi-armed bandits (RMABs) consist of N het-
erogeneous control processes (arms) and an agent who can
pull K arms at each time step to accumulate rewards over
time. Each arm of an RMAB is composed of a Markov De-
cision Process (MDP) (Puterman 2014) which can evolve
and change states even when an arm is not pulled, as op-
posed to the classic stochastic multi-armed bandit problem
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Figure 1: A mother enrolled in
ARMMAN’s maternal health sup-
port program receives an automated
message. Photo courtesy of ARM-
MAN.

(Sutton and Barto 2018). The agent’s goal is to plan a policy
for the sequential pulling of arms conforming to the K-arm
per-round budget constraint in order to maximise the total
reward that can be obtained. The reward for each arm de-
pends generally on the states and actions of the correspond-
ing MDP.

RMABs are popularly used in application domains
such as machine repair and sensor maintenance (Glaze-
brook, Ruiz-Hernandez, and Kirkbride 2006), planning anti-
poaching patrols (Qian et al. 2016), communication systems
(Sombabu et al. 2020), web crawling (Avrachenkov and
Borkar 2019) and congestion control (Avrachenkov et al.
2013). In recent times, RMABs have been used to model
interventions in the public health domain (Mate et al. 2022;
Nishtala et al. 2021; Lee 2016; Li and Varakantham 2022).
SAHELI is a system to efficiently utilize the limited avail-
ability of health workers for improving maternal and child
health, and is the first successfully deployed application for
RMABs in public health (Verma et al. 2023).

RMABs are an appropriate solution to model many prob-
lems relating to adherence, specifically public health inter-
vention resource allocation (Mate et al. 2022; Killian et al.
2019) problems as they can handle several of the key chal-
lenges presented by this domain. For instance, resources are
limited in such problems, which is captured in the restricted
budget K of RMABs. Additionally, the effect of intervention
on individuals may vary, which is captured by RMABs al-
lowing heterogeneous arms. Moreover, an intervention will
change the future health or adherence state of a person, com-
pared to if the same person did not receive an intervention,
which is captured by MDPs of RMABs, but not captured by
simpler stochastic MABs. Finally, the goal of most public
health intervention problems is to maximize health or adher-
ence, naturally aligning with the reward maximization ob-
jective of RMABs. Clearly, RMABs are well suited to these
challenges and objectives.



Due to their prevalence in modelling adherence-based
problems, it is imperative to look at the characteristics of
RMAB models in the specific domain. We term this sub-
set of RMABs as ‘Adherence Bandits’ and define their at-
tributes. Our key contributions are: (i) Establish Adherence
Bandits to maximise adherence in public health intervention
problems and lay foundation to their definition. (ii) Derive
useful technical properties of Adherence Bandits and their
extensions (iii) View key relevant related works through the
lens of Adherence Bandits (Table 2 in appendix).

Related Works
Monitoring of patient adherence in public healthcare is a sig-
nificant problem; non-adherence can be a serious threat to a
patient’s well being (Martin et al. 2005), not only in terms
of health, but also economically. (Sullivan 1990)

Previous work highlights RMABs as a good model of se-
quential resource allocation by allowing the non-intervened
arms to also evolve over time to simulate a more real-
istic system (Whittle 1988). Several works in the health-
care domain have studied patient adherence without RMABs
(Tuldrà et al. 1999; Corotto et al. 2013; Killian et al. 2019)
however, these models are unable to handle the sequential
nature of resource allocation due to their single-shot predic-
tions. Moreover, budget constraints can be hard to model
and the pool of beneficiaries labelled as ”high-risk” can it-
self be very large, defeating the purpose of resource allo-
cation when using such single-shot predictors. Other se-
quential resource allocation methods, such as (Liao et al.
2020), also fail to take into account the limited budget of
resources. RMABs consider sequential resource allocation
under a specified budget constraint, which makes them an
effective tool to model public health interventions.

RMABs have been successfully explored and widely
studied in the public health domain (Mate et al. 2022; Li and
Varakantham 2022; Lee 2016). They have also been success-
fully deployed and used by ARMMAN — a maternal health
and childcare NGO focused on creating scalable solutions
for empowering pregnant women and mothers and enabling
healthy children by improving access to preventive informa-
tion and services (Verma et al. 2023). Their deployed RMAB
system, SAHELI, has already reached approximately 100K
beneficiaries and is on track to serve 1 million beneficiaries
by the end of 2023. Thus, RMABs are an efficient and scal-
able solution to model problems in the public space.

In the public health setting, RMABs have specific char-
acteristics that must always be followed. Previous work
fails to take into account the adherence-specific attributes
of RMABs and does not exploit their properties when build-
ing models for these problems. (Mintz et al. 2020) attempt
to present a useful framework for modelling habituation
for healthcare-adherence improving interventions, however
they do so using a rested bandit model. A rested MAB ig-
nores the evolving state of beneficiaries in the absence of an
intervention, which is a crucial characteristic to take into ac-
count to prevent dropouts. Our work extends a restless multi-
armed bandit model for maximising adherence, and estab-
lishes specific properties that are relevant to the domain.

Figure 2: A 2-action MDP with a good (1) and bad (0) state.
P a (solid lines) denotes “active” action (intervention) and
P p (dashed lines) denotes “passive” action (no intervention).

Preliminaries

RMAB

A Restless Multi-armed Bandit (RMAB) model consists of
N arms, where each arm evolves as an independent MDP.
The i-th arm in an RMAB model is an MDP defined by
the tuple (Si,Ai, Ri, Pi). Si and Ai are the state space and
action space respectively, and Ri, Pi : S × A × S → R
are the reward and transition functions. Pα

i,s,s′ denotes the
transition probability of evolving from state s to state s′

given the action α. A policy π is a mapping ×i∈[N ]Si →
×i∈[N ]Ai that selects the action to be taken on each arm,
given the state of all arms, subject to the resource constraint
||π(s)||1 ≤ K ∀s ∈ ×i∈[N ]Si. The optimal policy π⋆ is the
policy that maximises the total reward accrued. Two com-
mon criterion to measure the total reward accrued are the
discounted reward or average reward criteria, which sum up
the individual rewards accrued at each time step t. The dis-
counted reward criteria across T time steps and N arms is∑T

t=1 γ
t−1

∑
i∈[N ] rt,i, where γ ∈ [0, 1] is the discount fac-

tor.

Solution Strategy

RMABs suffer from the curse of dimensionality as the state
space grows exponentially in the number of arms. Solving
for the optimal actions in an RMAB is a P-SPACE hard
problem in general (Papadimitriou and Tsitsiklis 1999), even
with the transition rules known fully. Existing work has
focused on designing index based solution techniques to
RMABs. The ‘Whittle Index’(Whittle 1988) solution strat-
egy is the most popular solution paradigm for RMABs. The
sanctity of this method however hinges on the validity of
a technical condition called ‘indexability’. Indexability es-
tablishes the existence of an index-based solution and also
guarantees the asymptotic optimality of its solution. How-
ever, even verifying indexability for RMABs has proven to
be notoriously difficult, with no known result available on
indexability for RMABs in general. In this work, we show
indexability guarantees to hold for the basic Adherence Ban-
dits framework.



2-State, 1-Dimensional S-State, 1-Dimensional

Full Observability Indexable/Threshold Optimal ?/?

Collapsing Observability 88% Indexable/Threshold Optimal ?/?

General Observability ?/? ?/?

Table 1: Summary existing technical results for ARs with different structure. Question marks indicated open areas of study.
Threshold optimal indicates that a simple class of policies can be used to compute the Whittle index in closed form.

Basics of an Adherence RMAB
Properties of Adherence RMABs
We define Adherence Bandits (ABs) as a subclass of general
RMABs with the following basic properties.

1. ABs have two discrete states which capture “adherence”
or “engagement” with respect to the health content:

s ∈ S := {0, 1} (1)

2. The states of adherence RMABs are fully observable,
e.g., planners know whether or not a health message was
listened to via call records.

3. Rewards are a simple identity function of the current
state. Moreover, rewards are accrued on all arms, regard-
less of whether the planner takes an action. That is:

R(s, a, s′) = s (2)

Coupled with the reward maximization objective of
RMAB, this ensures that policies maximize the total ad-
herence of the cohort over time.

4. Acting is at least as good as not acting. That is, delivering
an intervention should not decrease the probability that
the arm reaches the adhering state:

P a
0,1 ≥ P p

0,1;P
a
1,1 ≥ P p

1,1; (3)

5. An arm that is already adhering is more likely to stay
adhering than an arm that was not previously adhering:

P a
1,1 > P a

0,1;P
p
1,1 > P p

0,1 (4)

6. ABs have just two actions, namely {NOT INTER-
VENE,INTERVENE}, or {0,1}.

7. The number of interventions is much lesser than the total
number of beneficiaries

K << N (5)

Useful Technical Properties
We show that two-state RMAB instances with fully observ-
able states, are always indexable (proof in appendix).

Theorem 1. Consider an RMAB instance with each arm
representing a fully observable 2−state MDP with an ar-
bitrary transition matrix P . Each arm of such an RMAB is
indexable and consequently, the RMAB is indexable.

Moreover, the 2-state model has some computational con-
veniences when considering robust objectives. First, the 2-
state model guarantees indexability, reducing the class of
policies over which one must search for adversaries (Kil-
lian et al. 2023). Additionally, the constraints on the proba-
bility space reduce the size of the uncertainty set that must
be considered, helping make adversarial search algorithms
tractable (Killian et al. 2023).

Useful Applied Considerations
The two-state model is easily interpretable, e.g., a binary
yes/no adherence state, which facilitates discussion with do-
main experts about the dynamics of the problem – one of the
most complicated and time-consuming parts of many collab-
orations, but often overlooked in academic papers.

From the computational side, the two-state model is also
convenient for allowing scale-up, since real-world public
health problems often have thousands if not millions of arms
(Mate et al. 2022). The smaller models also require less data
to support, which is important since data is often scarce.

Real Problems as Basic ABs
The Basic AB, and related extensions thereof, capture many
real world problems. One important example is the maternal
health engagement problem faced by ARMMAN. In this set-
ting mothers must listen to weekly automated messages pro-
viding life-saving information about various stages of their
pregnancy. ARMMAN has limited health workers who can
place service calls to try to improve adherence of mothers
with low listenership. We have collaborated with ARMMAN
to model this problem as a Basic AB, where the problem
meets all the above seven properties. We have conducted
field studies demonstrating the positive impact of targeting
interventions via Basic ABs (Mate et al. 2022), and have
followup work studying the robustness to model uncertainty
over the same Basic AB (Killian et al. 2023). Another key
example of an AB is that of scheduling chronic care visits
(Deo et al. 2013). They also consider an RMAB model that
is a special case of the basic 2-state AB with perfect inter-
vention effects. We give an extended comparison to related
works under the lens of the AB definition and its extensions
in the appendix (due to space constraints).

Extensions of Basic ABs
While the basic AB model captures the key elements crucial
to utilizing the RMAB framework for adherence problems in



public health, oftentimes, this there are additional complex-
ities involved that necessitate fundamental advances along
several axes as highlighted in the following subsections.

Adherennce Bandits with Collapsing Observability
In many public health settings, especially outside of digital
content delivery, full observability of the state may not be
possible. As a real-world example, the adherence status of
tuberculosis patients may only be observed for patients re-
ceiving an intervention (Mate et al. 2020). For arms that are
not pulled, there is uncertainty in the true state, which may
evolve in the background. However for arms that are pulled,
an observation is received and the uncertainty collapses.

Inspired from the tuberculosis medication adherence
monitoring use case, Mate et al. (2020) propose the “Col-
lapsing Bandits” model to capture this phenomenon, extend-
ing basic ABs by relaxing the full observability assumption.
They also adopt the Whittle index based solution approach
and utilize the special “collapsing” structure to speed up the
index computation. Herlihy et al. (2021) Adopt the collaps-
ing structure to the domain of sleep apnea treatment adher-
ence. Mate et al. (2021) then consider an extension of col-
lapsing observability to a ‘streaming’ setting, in which new
arms arrive and existing arms leave the system. This models
health programs in which new enrollees may join on an on-
going basis and existing enrollees finish the health program
and leave after a finite stay.

The indexability guarantees of basic ABs however, no
longer fully extend to Collapsing Bandits. (Mate, Perrault,
and Tambe 2021) derive sufficient conditions in terms of
the transition function P , that guarantee indexability. These
conditions yield provable indexability guarantees for 88%
of all instances of Collapsing Bandits. (Mate, Perrault, and
Tambe 2021) also propose an extension to the collapsing ob-
servability model to account for ‘imperfect’ observations.
In this setting, the states are still unobserved for arms not
pulled, but even for arms that are pulled, the observation may
be imprecise and the uncertainty only collapses partially to
fixed probability values depending on the observation.

Extending basic ABs to handle general observability,
while giving technical guarantees, is an open challenge.

Adherence Bandits with General Reward function
The basic AB model assumes a simple reward function in
the state s, equivalent to optimizing for an objective that de-
pends on aggregate statistics, such as the average adherence
of the beneficiary cohort. In partial observability settings,
this translates to a linear reward function in terms of the be-
lief vector over the true underlying states. However, in many
scenarios, a planner may be risk-sensitive (e.g., risk-averse)
or may need to account for fairness and need tools that go
beyond optimizing for aggregate cohort statistics.

Mate, Perrault, and Tambe (2021) extend basic ABs by
proposing a technique that can admit any non-linear, non-
decreasing reward functions ρ. This relaxes the reward func-
tion assumption to require only a simpler condition: R(1) >
R(0). Herlihy et al. (2021) propose an improvement of in-
dex policies to guarantee ‘probabilistic fairness’, defined in
terms of a minimum probability of receiving an intervention.

ABs with Multiple actions
In many public health intervention problems, planners have
access to more than one type of intervention. In such cases,
more tools or structures are needed to develop efficient and
well-performing policies, since the commonly-used Whittle
Index policy for ABs requires having only two actions.

First, we extend the constraints on P for the multi-action
case. We maintain that intervention has a positive effect
compared to no intervention. That is: P ai

0,1 ≥ P a0
0,1;P

ai
1,1 ≥

P a0
1,1 ∀i > 0. Where a0 is the passive action. However, in

general, no relative ordering of the effectiveness of interven-
tions types is assumed, reflecting real-world heterogeneity.

To solve Multi-action ABs, the Lagrangian relaxation can
be used, from which the Whittle index policy is derived
(Killian, Perrault, and Tambe 2021). However, this involves
solving a linear program, which is less efficient than com-
puting indexes. To account for this, previous work devel-
oped a method that take advantage of realities in real-world
data, namely that many patients have unwavering adherence
behavior, regardless of intervention (Killian et al. 2019; Kil-
lian, Perrault, and Tambe 2021). In a multi-action AB model,
the “value-function” for such unwavering patients has a sim-
ple form that can be replaced with a far cheaper represen-
tation without sacrificing solution quality. Killian, Perrault,
and Tambe (2021) develop a method to automatically detect
such patients, work with their bounded forms, and find well-
performing policies by focusing computational expenditure
only on those patients with more complex dynamics who
need intervention to maintain good adherence.

Killian et al. (2021) extended these ideas to develop meth-
ods for learning policies for multi-action ABs online, and
Killian et al. (2022) for operating in robust multi-action AB
environments. In such cases, the simple 2-state models, P
constraints, and existence of unwavering-style patients all
provide sample efficiency benefits that greatly speed up pol-
icy learning.

Other Extensions to ABs
We envision other natural extensions to ABs. First, it may
be natural to include more than two adherence states, e.g.,
highly engaged, semi-engaged, or disengaged, to capture
more complex dynamics. Second, it may be natural to jointly
model adherence and its health effects, i.e., designing a
multi-dimensional state space. Third, it may be desirable to
plan budget allocations flexibly within certain time periods,
e.g., plan weekly allocations with a monthly budget (Diaz
et al. 2023). Finally, in some cases, especially in long treat-
ment regimens, adherence transition dynamics may change
for each patient over time (non-stationarity of P ).

Conclusion
We identify and define ‘Adherence Bandits’ (AB) as a spe-
cial subclass of restless multi-armed bandits, that is naturally
suited to address prevalent adherence monitoring challenges
in public health. We highlight key defining features of a ba-
sic AB, discuss existing work extending basic ABs, as well
as directions for future work appealed to by existing public
health challenges.
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Domain Description Status Basic AB? Collapsing
Extension?

Other AB Extension?

Maternal health (Mate
et al. 2022; Verma et al.
2023)

Mothers scheduled for
engagement-boosting
interventions in
telehealth program.

Deployed Yes No Possible, not yet
proposed

Community care
scheduling (Deo et al.
2013)

Schedule asthma
treatments. 2-state
health model with all
AB properties.
Multi-state extensions.

Simulated Yes No Also consider
multi-state

Tuberculosis (TB)
(Mate et al. 2020)

TB patients scheduled
for adherence-boosting
interventions. 2-states,
observed on action.

Simulated No Yes Possible

Sleep apnea treatment
adherence (Herlihy
et al. 2021)

Sleep apnea patients
scheduled for CPAP
adherence-boosting
interventions. 2-states,
observed on action

Simulated No Yes Fairness constraints

Cancer screening (Lee,
Lavieri, and Volk 2019)

Monotone disease
progression model.
Action reveals hidden
state.

Simulated No No Multi-state, specialized
collapsing observability

Hepatitis C (Ayer et al.
2019)

Model Hepatitis C
progression of prison
inmates. Monotone
disease state
progression model.
Action stops
progression.

Simulated No No Multi-state

Daily Step Counts
(Diabetes) (Mintz et al.
2020)

Arms are actions, with
possible increasing or
decreasing reward
depending on
frequency of play.

Simulated No No Continuous state,
sub-Gaussian rewards,
multi-action

Table 2: Related works under the lens of Adherence Bandits (ABs).



Appendix
Please see Table 2 for a list of published related works as
they relate to Adherence Bandits.

Proof of Theorem 1

Theorem 1. Consider an RMAB instance with each arm
representing a fully observable 2−state MDP with an ar-
bitrary transition matrix P . Each arm of such an RMAB is
indexable and consequently, the RMAB is indexable.

Proof. To show indexability of RMABs with fully observed
2-state MDPs on arms, we prove three useful Lemmas which
lead to the Theorem proof.

Lemma 1. An RMAB arm with transition matrix P , value
function Vm(s) for state s, passive subsidy m and a discount
factor of β is indexable if it satisfies:

1 + β
[
(P a

s1 − P p
s1)(V

′
m(0)− V ′

m(1))
]
≥ 0 for s ∈ {0, 1}

Proof. Consider the above condition:

1 + β
[
(P a

s1 − P p
s1)(V

′
m(0)− V ′

m(1))
]
≥ 0

=⇒ 1 + β
[
V ′(1)(P p

s1 − P a
s1) + (P a

s1 − P p
s1)V

′
m(0)

]
≥ 0

=⇒ 1 + β
[(
V ′(1)P p

s1 − V ′(0)P p
s1 + V ′(0)

)
−
(
V ′(1)P a

s1 − V ′(0)P a
s1 + V ′(0)

)]
≥ 0

=⇒
[
1 + β

(
V ′(1)P p

s1 + V ′(0)(1− P p
s1)

)]
−
[
β
(
V ′(1)P a

s1 + V ′(0)(1− P a
s1)

)]
≥ 0

=⇒ ∂

∂m

[
m+ β

(
V (1)P p

s1 + V (0)(1− P p
s1)

)]
− ∂

∂m

[
β
(
V ′(1)P a

s1 + V ′(0)(1− P a
s1)

)]
≥ 0

=⇒ ∂

∂m

[
V p
m(s)

]
− ∂

∂m

[
V a
m(s)

]
≥ 0

(6)

This condition implies that passive value function, V p
m(s)

increases with m at a rate greater than the active value func-
tion, V a

m(s). Thus, if the passive action were optimal for a
given m∗, it implies the passive action will still be optimal
∀m > m∗. This implies indexability.

Lemma 2. Let ∆V denote V ′
m(0) − V ′

m(1), the difference
in the derivatives of value functions for states 0 and 1, with
respect to passive subsidy, m. Then,

∆V := V ′
m(0)− V ′

m(1) =
1α0=p − 1α1=p

1− β
(
Pα1
11 − Pα0

01

) (7)

Proof. We solve for ∆V as follows:

∆V =V ′
m(0)− V ′

m(1)

=
∂

∂m

(
max{V p

m(0), V a
m(0)}

)
− ∂

∂m

(
max{V p

m(1), V a
m(1)}

)
=

∂

∂m

(
V α0
m (0)− V α1

m (1)
)

where αs denotes the optimal action at state s

=1α0=p − 1α1=p + β
[
Pα0
01

(
V ′
m(1)− V ′

m(0)
)

− Pα1
11

(
V ′
m(1)− V ′

m(0)
)]

where 1 denotes the indicator function

=1α0=p − 1α1=p + β
[(
V ′
m(0)− V ′

m(1)
)(
Pα1
11 − Pα0

01

)]
∆V =1α0=p − 1α1=p + β

[(
∆V

)(
Pα1
11 − Pα0

01

)]
Re-arranging the terms, we get:

∆V =
1α0=p − 1α1=p

1− β
(
Pα1
11 − Pα0

01

) (8)

Plugging in the expression for ∆V back in the condition
of Lemma 1, the condition for indexability can be written as:

1+
β
[
∆Ps(1α0=p − 1α1=p)

]
1− β

(
Pα1
11 − Pα0

01

) ≥ 0 for s ∈ {0, 1} (9)

i.e.
1 + β

(
∆Ps ∆1−∆Pa

)
1− β ∆Pα

≥ 0 for s ∈ {0, 1} (10)

where ∆ 1 = 1α0=p − 1α1=p, ∆Pα = Pα1
11 − Pα0

01 and

recall that ∆Ps = P a
s1 − P p

s1

We finish the theorem proof by showing in Lemma 3 that
the condition of Equation 10 holds true.

Lemma 3. For a 2-state MDP, let αs ∈ {a, p} denote the
optimal action at state s under a passive subsidy of m. De-
fine ∆ 1 := 1α0=p − 1α1=p, ∆Pα := Pα1

11 − Pα0
01 . Then,

1 + β
(
∆Ps ∆1−∆Pα

)
1− β ∆Pα

≥ 0 for s ∈ {0, 1} (11)

Proof. We prove this Lemma by showing that both the nu-
merator and denominator of the expression on the left-hand-
side above are non-negative. For the denominator:

∥β∆Pα∥ = ∥β∥.∥∆Pα∥ < 1

=⇒ 0 ≤ 1− ∥β∆Pα∥ ≤ 1− β∆Pα

=⇒ Denominator is non-negative (12)

For the numerator:
Consider the 4 possible cases corresponding to possible

combinations of values of α0 and α1. We show that in each
case the numerator is non-negative.



Case 1. α0 = a, α1 = a AND
Case 2. α0 = p, α1 = p:

Numerator = 1 + β(−∆Pα) ≥ 0

Case 3. α0 = p, α1 = a :

Numerator = 1 + β(∆Ps −∆Pα)

= 1 + β(P a
s1 − P p

s1 − P a
11 + P p

01)

= 1 + β
(
(P a

s1 − P a
11)− (P p

s1 − P p
01)

)
The former (latter) bracket is 0 if s = 1 (s = 0).

=⇒ Numerator ≥ 0 (13)

Case 4: α0 = a, α1 = p

Numerator = 1 + β(−∆Ps −∆Pα)

= 1 + β(−P a
s1 + P p

s1 − P p
11 + P a

01)

= 1 + β
(
− (P a

s1 − P a
01) + (P p

s1 − P p
11)

)
The former (latter) bracket is 0 if s = 1 (s = 0).

=⇒ Numerator ≥ 0 (14)

This completes the Theorem proof.


