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Abstract

Rivers are under pressure from human development, which
impacts river ecosystems severely. As part of the UN Decade
of Ecosystem Restoration, UN has decided to take actions
to restore ecosystems. Fresh water ecosystems have been
considered particularly degraded. Making effective policies
for how to restore river ecosystems is practically impossi-
ble without quantitative data that takes historical development
into consideration. We present a system that semantically seg-
ments historical aerial images of riverscapes into six different
classes and an analysis framework for large-scale temporal
analysis of riverscape development that will utilize the seg-
mentation classes when completed. The best performing se-
mantic segmentation model achieves an average MIoU 74.1%
and utilizes both model-centric and data-centric methods. A
qualitative error analysis shows that this performance is satis-
factory for temporal analysis of riverscape development given
the requirements of both local and global analyses.

Introduction
The changes of the rivers and adjacent landscapes have been
accelerating since start of the 20th century (Piégay et al.
2020). Pressures caused by Human activities such as de-
velopment of hydropower sites, flood protection construc-
tion, gravel mining and urbanization are the main factors of
such drastic change (Gilvear and Bryant 2016; Grill et al.
2019). These pressures impact the ecosystem provided by
rivers and led to reduction of biodiversity and habitat loss
(Wohl 2019). Therefore, it is crucial to provide restoration
for the degraded rivers and to ensure that future decisions
will consider the sustainability of the rivers and their ecosys-
tems. The UN declared the decade from 2021 to 2030 as the
UN Decade of Restoration to emphasize the importance of
revival of ecosystems all around the world. The European
Union has adopted the Water Framework Directive (WFD)
with the goal of ensuring the sustainable use of river ecosys-
tems and if necessary addressing required mitigation. How-
ever, in order to find potential restorations and develop sus-
tainable policies, it is essential to understand the effect of
previous decisions on the development of rivers. As different
encroachments, like regulations for hydropower, have been
applied to different rivers, studying the evolution of rivers
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will help to understand their impacts. This study should in-
clude multiple states of rivers from historical time, with as
few anthropogenic influence as possible, to the recent time.
However, the bottleneck of this study is the acquisition of
data which represents the historical state of the river and
such process should start with automatic semantic segmen-
tation of historical images (Åström et al. 2017). Satellite
images are not suitable, since before 1990 satellite images
were not taken on a regular basis. However, aerial photog-
raphy started to appear around the 1930s and are taken with
high resolution, which make them a great source for data
acquisition (Marchese et al. 2017; Arnaud et al. 2015). Even
though such aerial images are available, these images should
be mapped into desired habitats in order to use them for the
assessment process (Piégay et al. 2020).

Several works aimed to study the evolution of lim-
ited rivers through time by using historical maps (Gurnell,
Downward, and Jones 1994), historical topographical maps
(Garcı́a, Dunesme, and Piégay 2020), aerial images (Gurnell
1997), and combination of historical maps and aeiral im-
ages (Zanoni et al. 2008). New architectures have been pro-
posed for semantic segmentation of land cover classification
datasets such as DeepGlobe (Demir et al. 2018) and Land-
Cover.ai (Boguszewski et al. 2021). Architectures such as
NU-Net (Samy et al. 2018), FPN (Seferbekov et al. 2018a)
with ResNet50 as backbone (He et al. 2016) and spatial
dropout (Seferbekov et al. 2018b), DIResUNet (Priyanka
et al. 2022), GLNet (Chen et al. 2019) and MagNet (Huynh
et al. 2021). MagNet is state-of-the-art in DeepGlobe land
cover classification. Moreover, stochastic weight averaging
(SWA) (Izmailov et al. 2018) and Lovasz-Softmax loss func-
tion (Berman and Blaschko 2017) are used to improve the
performance (Rakhlin, Davydow, and Nikolenko 2018).

In land cover classification of riverscapes, a lot of research
is done on analysis of remote sensing at sub-metric resolu-
tions (Marcus and Fonstad 2010; Carbonneau et al. 2012;
Piégay et al. 2012, 2020). High resolution images lead to
better understanding of river ecology (Vannote et al. 1980;
Fausch et al. 2002; Carbonneau and Piégay 2012) and an
abundance of high resolution images are available. Satellite
images have been used in several studies such as work of
(Bhatpuria et al. 2022). To our knowledge, the only other ex-
ample from literature that utilizes deep learning for semantic
segmentation of historical aerial images of riverscapes is Al-



fredsen et al. (2021). We reproduce their work and consider
the reproduced model as baseline.

Despite the importance of data, it has been the under-
valued part of AI ecosystem (Aroyo et al. 2021). How-
ever, recent attention to data-centric 1 approaches (Whang
and Lee 2020) led to promissing achievements in domains
such as image segmentation (Motamedi, Sakharnykh, and
Kaldewey 2021), object detection (Terzi, Azginoglu, and
Terzi 2021) and semantic segmentation (Roth, Wüstefeld,
and Weichert 2021).

Our main contributions are threefold. We present a deep
learning model that semantically segment historical aerial
images of riverscapes into six habitat types of riverscapes
that improve over state-of-the-art. Second, we show through
an ablation study that improved label quality and data aug-
mentation are responsible for increasing the performance of
the baseline from 64.6% to 72.5%. Changing the encoder
from VGG16 to ResNet50 is responsible for the additional
performance. Finally, we show how the semantic segmen-
tation model can be utilized in analyses of how riverscapes
develop over time.

Challenges of Historical Aerial Images
We focus on historical aerial images of riverscapes from the
1960s to 1990s. Working with historical aerial images have
unique inherent challenges: 1) Images are grayscale. Lack
of color information make it more difficult to understand the
underlying land type of each area. 2) Images are taken over
a period of 40 years and changes in camera technology led
to different contrast and brightness for different images. 3)
Land types are not uniformly distributed so the data suffers
from class imbalance. 4) The land type of some areas are
hard to determine even for an expert, due to the low quality
of images.

Method and Experiments
We evaluate different deep learning methods for seman-
tic segmentation along with other techniques including im-
proved label quality. Models must semantically segment
riverscapes into the habitat types water (W), gravel (G), veg-
etation (V), farmland (F), anthropogenic (A), and unknown
(U). Reproducing baseline: The baseline is made by repro-
ducing the work of (Alfredsen et al. 2021). The model used
in this work is a U-Net with VGG16 (Simonyan and Zis-
serman 2014) encoder. The dataset, D0, contains (512×512
px) images of rivers Gaula 1963, Surna 1963 and Lærdal
1978 and the test set contains areas from river Gaula 1963,
1998 and Nea 1962. We tested if data augmentation would
improve the performance of the baseline. Improving la-
bels: We investigated if improving the data was a viable
way of improving the performance of the baseline model.
An informal inspection of labels indicated that the dataset
had two main issues: 1) Errors and inconsistencies in labels
and 2) Class imbalance. To improve the label quality, a set
of domain experts re-annotated the data similar to (Terzi,
Azginoglu, and Terzi 2021) and a set of strict guidelines
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were followed by the domain experts. To have detailed an-
notations, they were made by drawing with a pen on a tablet
instead of typical polygon tools in GIS which is more typical
(Carbonneau et al. 2020). To mitigate the class imbalance, a
data augmentation method that rotates and samples images
(RSA) was implemented. RSA is described in the appendix.
In addition, an overview of dataset is described in the ta-
ble A1. Model comparison: A model comparison study was
conducted to identify whether the performance could be fur-
ther improved. Several recent deep learning models devel-
oped for semantic segmentation as well as other techniques
were evaluated. To improve the robustness and account for
different camera quality, two different pipelines for online
image augmentation (OA1 and OA2) were tested which
are described in the appendix. To mitigate the class imbal-
ance, weighted categorical cross entropy (WCE) (Samy et al.
2018) was used.

Two experiments are conducted. The first experiment
evaluates the effect on improving data and the second ex-
periment evaluates the effect of using other deep learning
architectures and online data augmentation techniques.

Experiment 1: Data improvements In this experiment,
we evaluate the impact of label quality and data augmenta-
tion on the performance. The baseline is trained with and
without RSA on D0 and D1. Additionally, we test the more
advanced architectures FPN, DeepLabV3+ and U-Net with
ResNet50 as encoder on D0 to evaluate whether the more
advanced architectures handle the noise D0 data better.

Experiment 2: Model comparison Four deep learn-
ing architectures, MagNet, FPN, DeepLabV3+ (Chen et al.
2018) and U-Net with ResNet50 as encoder were selected,
in addition to SWA, RSA, WCE and online augmentation.
In order to test these alternatives, a model comparison study
was conducted. D1 was used as training data due to its per-
formance in the previous experiment. MagNet is pretrained
on DeepGlobe dataset. The detail of the experiment is de-
scribed in the appendix.

Results
Experiment 1: Table 2 shows the results of Experiment 1.
Surprisingly the performance on the baseline did not im-
prove by though data augmentation (RSA) when trained on
D0. Also, none of the new architectures achieved any im-
provement when trained on D0. This can be explained by
noise and inconsistencies in the annotation of D0. When
training the baseline model on D1, the results improved by
4.86% and applying RSA led to a 2.1% additional improve-
ment of average MIoU. Improved label quality and data aug-
mentation have a significant effect on performance. Exper-
iment 2: Table 1 shows the results of Experiment 2 for all
combinations of the baseline but only the best performing
combination for the other methods. For all the architectures
SWA and RSA led to improvements. Less intensive online
augmentation (OA2) performed better than OA1. Given that
the data is grayscale, the model needs to solely rely on the
texture of the image. Therefore some spatial augmentations
might lead to confusion The full result is provided at the ap-
pendix.
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Figure 1: Examples of error cases observed in the baseline (middle column) as well as prediction of the improved model (right
column). The improved model still struggles with shimmering water while the issue with roads are resolved.

Model 

architecture
Encoder SWA RSA WCE OA1 OA2

Test sets (MIoU)

Gaula 63 Nea 62 Gaula 98 Average

U-Net
VGG16

78.16 68.4 61.82 69.46

✓ 79.29 71.20 61.34 70.61

✓ ✓ 79.13 73.43 64.75 72.43

✓ ✓ ✓ 80.55 74.27 60.8 71.88

✓ ✓ ✓ 74.76 65.23 69.95 69.98

✓ ✓ ✓ ✓ 79.56 72.96 64.76 72.46

ResNet50 ✓ ✓ ✓ ✓ 77.59 71.25 73.55 74.13

FPN ResNet50 ✓ ✓ ✓ ✓ 79.30 72.10 67.61 73.00

DeepLabV3+ ResNet50 ✓ ✓ 79.45 71.98 63.35 71.59

MagNet
FPN-

ResNet50
✓ ✓ ✓ ✓ 79.36 72.01 63.14 71.50

Table 1: MIoU of the model-centric experiments. Except
for U-Net VGG16, only the best performing combination
of model-centric methods are illustrated.

Qualitative Error Analysis
In order to have an insight into the reliability of the baseline,
we perform the analysis of the baseline and improved model.
The prediction of models on all test sets were manually in-
spected and most pervasive errors were grouped together as
error case. Some error cases are described as (correct la-
bel:prediction error). The overview of the cases are shown in
the Table 3 and Figure 1 provides visual examples of error
cases. More detailed description of the cases are presented
in the appendix.

An Example Of Changes Over Time
An analysis of how Gaula has changed from 1963 to 1998
is presented to illustrate how the segmentation model can
be used. Hydropower is not allowed in River Gaula. How-
ever, it is not immune to other human influences. Figure
2 shows two images of the same geographical location of
River Gaula in 1963. The left image highlights the changes
in the river and the middle image illustrates how gravel has
changed. These classes are the output of the semantic seg-
mentation model with quick inspection of domain experts.
In addition, the percentage of frequency of each class is il-
lustrated in the bar chart. Figure shows the gravel bars in
this area completely disappeared from 1963 to 1998 The de-
crease in gravel can be due to human pressures or different
discharge of the river or a combination of both. The decrease
of gravel in River Gaula plays an integral role in the biodi-

Model 

architecture
Encoder RSA D0 D1

Test sets (MIoU)

Gaula 63 Nea 62 Gaula 98 Average

U-Net
VGG16

✓ 69.12 69.80 54.18 64.60

✓ ✓ 63.18 59.46 47.88 56.84

✓ 78.16 68.4 61.82 69.46

✓ ✓ 79.23 73.11 62.62 71.65

ResNet50 ✓ 70.10 67.94 55.73 64.59

FPN ResNet50 ✓ 73.25 70.99 40.06 61.43

DeepLabV3+ ResNet50 ✓ 68.26 67.46 54.32 63.35

Table 2: Results in form of mean intersection of union
(MIoU) for Experiment 1: Data improvements. First row is
the reproduction of the baseline and rows are colored based
on the version of the data used for training.

versity of the surrounding environment. The proportion of
the anthropogenic class increased and indicates the potential
effect the river and gravel bars. An increase in the frequency
of water and vegetation can also be seen.

Temporal-analysis Framework
The analysis of development of riverscapes can be done in
two levels: 1) global and 2) local. The first step of both anal-
yses is to segment the aerial images of rivers in multiple time
points into the six desired classes. Segmented images will be
used as input for both analyses. The local analysis focuses
on the development of one river or a section of it (e.g. 100
km length). Local analysis investigates the detailed changes
of the morphology of a river over time. Such changes in-
clude development of side channels, gravel bars, width of
the river and change in the meander ratio (Rosgen 1994). By
comparing the development of one river regulated for i.e.,
hydropower with an unregulated river in the same region, it
is possible to disentangle the impact of the regulation from
other anthropogenic and natural influences. Local analyses
is more detailed compared to global analyses. Therefore, the
output can be slightly corrected by experts. However, global
analyses investigates the development of multiple rivers on
a large scale. The segmentation map of many rivers will be
stored in a geospatial database. The output of semantic seg-
mentation can be used for computing large scale morpho-
logical and land use indices, like Connectivity Status Index
(Grill et al. 2020), and to compare the development of rivers
at a large scale. For example, comparing the development of
all the regulated rivers in an area to the unregulated ones is



Test sets Gaula 1963 Gaula 1998 Nea 1962

Error Cases W:F Road Noisy A W:F V:W W:V W:G W:F Road
Shimmering 

W F:W

Baseline

U-Net 

ResNet50

Table 3: An overview of error cases observed in the baseline and the improved model. The red, yellow and green respectively
indicate that there is a problem, the problem is partially solved and the problem is solved. It shows that shimmering waters still
remain an issue for the improved model and Water:Farmland and Water:Gravel issues are not completely solved.

%

Figure 2: Comparison of land types of a section of River Gaula in two years of 1963 (blue) and 1998 (red). The left image is
the aerial image masked with water class, The middle image is masked with gravel The right diagram shows the frequency of
each class.
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Figure 3: Framework for analysis of development of riverscapes through time. The input is a historical aerial image of a
riverscape which is segmented into six habitats using semantic segmentation model. The output of the model is used for local
analysis which focuses on one river, as well as global analysis which is large scale analysis of multiple rivers over time.

a possibility. The error rate of semantic segmentation on test
sets of this work can be used as an input to a global anal-
ysis to account for potential errors. However, this solution
might introduce some bias to the analysis. Historical aerial
images have high variety and the error of the test set of this
work might not represent the performance of the model on a
new river. One alternative is to use the predictive uncertainty
of the model using methods such as Monte-Carlo Dropout
(Gal and Ghahramani 2016) similar to (Dechesne, Lassalle,

and Lefèvre 2021). It is shown that the incorrect areas tend
to have higher predictive uncertainty compared to the cor-
rect ones (Czolbe et al. 2021; Wickstrøm, Kampffmeyer, and
Jenssen 2020). However, Neural Networks can be extremely
confident in wrong predictions which make it challenging
to use the estimation of uncertainty as the input to the anal-
ysis framework. Figure 3 illustrate the analysis framework
for analysing the development riverscapes over time.
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Endring i leveområder for elvesandjeger og stor elvebred-
dedderkopp ved Gaula. Forekomst og dynamikk av elveører
fra 1947 til 2014.
Berman, M.; and Blaschko, M. B. 2017. Optimization of
the Jaccard index for image segmentation with the Lovász
hinge. CoRR, abs/1705.08790.
Bhatpuria, D.; Matheswaran, K.; Piman, T.; Tha, T.; and
Towashiraporn, P. 2022. Assessment of Large-Scale Sea-
sonal River Morphological Changes in Ayeyarwady River
Using Optical Remote Sensing Data. Remote Sensing,
14(14): 3393.
Boguszewski, A.; Batorski, D.; Ziemba-Jankowska, N.;
Dziedzic, T.; and Zambrzycka, A. 2021. LandCover.ai:
Dataset for Automatic Mapping of Buildings, Woodlands,
Water and Roads from Aerial Imagery. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR) Workshops, 1102–1110.
Carbonneau, P.; Fonstad, M. A.; Marcus, W. A.; and Dug-
dale, S. J. 2012. Making riverscapes real. Geomorphology,
137(1): 74–86. Geospatial Technologies and Geomorpho-
logical Mapping Proceedings of the 41st Annual Bingham-
ton Geomorphology Symposium.
Carbonneau, P. E.; Belletti, B.; Micotti, M.; Lastoria, B.;
Casaioli, M.; Mariani, S.; Marchetti, G.; and Bizzi, S.
2020. UAV-based training for fully fuzzy classification
of Sentinel-2 fluvial scenes. Earth Surface Processes and
Landforms, 45(13): 3120–3140.
Carbonneau, P. E.; and Piégay, H. 2012. Introduction: The
Growing Use of Imagery in Fundamental and Applied River
Sciences.
Chen, L.-C.; Zhu, Y.; Papandreou, G.; Schroff, F.; and
Adam, H. 2018. Encoder-decoder with atrous separable con-
volution for semantic image segmentation. In Proceedings
of the European conference on computer vision (ECCV),
801–818.
Chen, W.; Jiang, Z.; Wang, Z.; Cui, K.; and Qian, X. 2019.
Collaborative Global-Local Networks for Memory-Efficient
Segmentation of Ultra-High Resolution Images. In 2019
IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR). IEEE.

Czolbe, S.; Arnavaz, K.; Krause, O.; and Feragen, A. 2021.
Is Segmentation Uncertainty Useful? In Feragen, A.; Som-
mer, S.; Schnabel, J.; and Nielsen, M., eds., Information Pro-
cessing in Medical Imaging, 715–726. Cham: Springer In-
ternational Publishing. ISBN 978-3-030-78191-0.
Dechesne, C.; Lassalle, P.; and Lefèvre, S. 2021. Bayesian
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Appendix
Dataset Details

River Dataset D0 Dataset D1
Gaula 1963 1086 8755 (57)
Lærdal 1978 609 3686 (24)
Surna 1963 4613 922 (6)
Sum 6307 13363 (87)

Table A1: Number of annotated 512×512 patches in D0 and
D1 before data augmentation (8000×6000 in parentheses).

RSA

RSA adds patches that are sampled from the rotated versions
of the large images. Only patches that have center pixels
from the class ”Gravel” are added. This reduces the imbal-
ance of both ”Gravel” and ”Water”, which are underrepre-
sented in both datasets. Patches that have large overlap with
other patches and that contains large amount of the unknown
class are filtered out. The algorithm of RSA is described in
Algorithm 1.

Algorithm 1: Rotation Algorithm for one large im-
age.

Input : ImageM∗N (Large image with MxN
dimension)

Input : P,Q (Dimension of sample images)
Input : SelectionLowerBound (minimum number

of sampling images)
Input : SamplingClass (class of interest for

sampling)
Input : Angle (Rotation Angle)
Input : MaxUnknownPercentage
Input : MaxOverlapPercentage
Output: ImageList: list of rotated images

1 Initialize ImageList as empty list
2 Rotate ImageM∗N by Angle◦

3 PotentialImageNumber ← (M ∗N)/(Q ∗N)
4 SelectionLowerBound←

max(SelectionLowerBound, PotentialImageNumber)
5 for i← 0 to SelectionLowerBound do
6 SampleCandidate← randomly sample an

image with center of SamplingClass;
7 if less than MaxUnknownPercentage of

SampleCandidate is UnknownClass AND less
than MaxOverlapPercentage of
SampleCandidate is already been sampled
and added to ImageList then

8 ImageList.append(SampleCandidate)
9 end

10 end

Experiment setups
Hyperparameters are selected using the Hyperband algo-
rithm (Li et al. 2018) with the objective of validation accu-
racy with maximum 20 epochs and 10 hybrid iterations. It is
used to select the initial learning rate between (0.01, 0.001,
0.0001) and dropout rate between (0.0, 0.1, 0.2) for archi-
tectures which have dropout. The batch size for all models
is 16, except for MagNet which is 12 for backbone and 8
for refinement modules. L2 regularization is used for con-
volutional layers of all models except MagNet. Stochastic
gradient descent with momentum of 0.9 and weight decay
of 5e-4, is used for optimizating MagNet’s backbone. The
refinement module of MagNet is trained as described in the
original paper. For other models, Adam is used with Re-
duceLROnPlateau, to reduce the learning rate by a factor of
0.5, if value loss did not decrease for more than 5 epochs.
SWA is used with the constant learning rate of 5e-5 and is
activated after the convergence, training stopped when value
loss does not decreased for 20 epochs. MagNet trained for
484 epochs. Then SWA is activated and learning continues
for 100 more epochs.

The ‘Gravel’ and ‘Water’ classes have more importance
when assessing the evolution of the river. Therefore, these
two classes were given higher weight to encode this impor-
tance into the objective in WCE. Finally, stochastic weight
averaging (SWA) (Izmailov et al. 2018) was used with the
aim of improving the generalization of the model.

Online Augmentations
• OA1: random flipping, transposition, random changing

of brightness and contrast, random image compression,
optical and grid distortion, blurring filters.

• OA2: random flipping, transposition, random changing
of brightness and contrast.

Experiment 1 This experiment is done using the smaller
512×512 patches and not the full size 8000×6000 images,
and MagNet could not be evaluated in this experiment. D0 is
trained with and without the RA, using the baseline model.
As Table 2 shows, unexpectedly, the RA led to worse perfor-
mance. This can be explained by noise and inconsistencies
in the annotation of D0, which led to low quality augmented
samples. These noisy samples aggravated the training and it
led to worse performance. Additionally, new architectures,
namely, FPN, DeepLabV3+ and U-Net with ResNet50 as
encoder, were also used for training the D0. Surprisingly, all
of these more advanced models performed worse than the
baseline model on D0.

However, when D1 was used for training the baseline
model, it outperformed the baseline which illustrates the ef-
fectiveness of improving the quality of the data, or more gen-
erally, the data-centric method. Moreover, when D1 is used
for training, applying the RA led to further improvement of
the result.

Experiment 2 Since the DeepGlobe land cover classifica-
tion dataset is relatively close to the dataset of this work,
MagNet was pre-trained on DeepGlobe. The last layer was
changed from 7 to 6 dimensions, to match the number
of classes in our data. To train the MagNet, images were



patched into 2448 × 2448 px, similar to DeepGlobe. Addi-
tionally 2 refinement modules with the scales of 612 × 612
and 1224 × 1224 were trained with an FPN backbone sim-
ilar to the original paper. To reduce the class imbalance
and encode the importance of ‘water’ and ‘gravel’ classes,
WCE used the weights U:01.72%, W:22.41%, G:22.41%,
V:17.24%, F:17.24% and A:18.97%.

Qualitative Error Analysis
Water:Farmland
• Baseline: Large segments of farmland can be found in the

water. This problem is more pervasive in Gaula 1963, but
it was observed in all the test sets.

• Improved: The noisy segments of farmland on the wa-
ter mostly disappeared. The noise remain in some small
areas only. The improved labeling of D1 reduced noise.
RSA and U-Net ResNet50 reduce it further.

Issue with roads
• Baseline: Roads are frequently ignored in Gaula 1963 and

Nea 1962 dataset.
• Improved: It is noticeable that the anthropogenic class

has more detail when the improved model is used. Im-
proved label quality is the main source of improvement.

Noisy anthropogenic segments
• Baseline: This issue is mostly observed in Gaula 1963.

Noisy segments of the anthropogenic class can be found
in vegetation. When training annotation was checked,
similar noises were found in the data.

• Improved: This issue was resolved by improved label
quality.

Shimmering water
• Baseline: Due changes in the light condition and sur-

face structure of the river in Nea 1962, some areas con-
tain shimmering water. This confuses models and led to
strange prediction.

• Improved: When using the best performing improved
model, this area is wrongfully predicted as gravel. How-
ever, other architectures such as MagNet and U-Net
ResNet without OA do not have this issue.

Vegetation:Water
• Baseline: Mostly in Gaula 1998, light forest is mislabeled

as water. This issue can be traced back to the dataset.
• Improved: This issue is resolved by improved label qual-

ity.

Water:Vegetation
• Baseline: Mostly in calm areas of the river in Gaula 1998,

large noisy segments of vegetation can be observed. The
issue can be related to the global context since two adja-
cent prediction windows have completely different pre-
dictions.

• Improved: This problem is resolved by improved label
quality and SWA and OA.

Water:Gravel
• Baseline: In Gaula 1998, some shallow areas of the rivers

were mislabeled as gravel. However, when inspected by
domain experts, these areas were considered to be vague
since images are grayscale and old.

• Improved: Even though this issue is improved consider-
ably when the improved model is used, still some seg-
ments of gravel can be seen in these areas. It might be
due to the uncertain nature of the problem. Even domain
experts have difficulties distinguishing the gravel bars in
the middle of the river, with the shallow water.

Farmland:Water
• Baseline: Mostly in Nea 1962 some farmlands are mis-

labeled as water. This problem might be related to the
context since the error happened at the edge of predic-
tion windows.

• Improved: This problem is resolved by improved label
quality.

New Issues: The improved models introduces new issues.
For example, some dark forest areas were classified as wa-
ter. Even though it is an error that affects the overall MIoU,
it will not affect the development studies relying on this
method as these areas are far from the riverscapes and will
not be part of the analyses.


