
Using Satellite Imagery to Predict Multidimensional Poverty in Nigeria

Amy Jin*1, Maximillian Guo*1

1Harvard University, Cambridge, MA
amy jin@college.harvard.edu, mguo@college.harvard.edu

Abstract

In recent years, computer vision and satellite imagery have
been used to predict poverty in various regions worldwide.
However, existing works often utilize individual poverty in-
dices such as income or consumption expenditure, as well
as high-resolution, commercial satellite imagery. Our work
presents these main contributions: 1) a self-curated dataset
containing publicly accessible, lower resolution satellite im-
age mosaics for each of the 37 regions of Nigeria, 2) an im-
age sampling approach for data augmentation that requires
imagery for only 0.01% of the country’s land area, 3) a cus-
tom model that directly predicts poverty without relying on
high-resolution images or intermediary proxies, and 4) pre-
diction of the multidimensional poverty index (MPI), a more
holistic measure of poverty that gives insight across multiple
dimensions of poverty including health, education, and living
standard indicators, in Nigeria. We find that a basic convolu-
tional neural network is capable of accurately predicting MPI,
especially when given additional structural information that
constitutes MPI such as population in MPI and deprivation
intensity or the ten components of MPI. This suggests that
satellite imagery and sampling can be used to cheaply pre-
dict MPI and potentially other more holistic poverty measures
across smaller regions or regions where it may be difficult to
collect data.

Introduction
Nine percent of the world, close to 700 million people, live
in extreme poverty on less than $2.15 per day (World Bank
2022). Historically, poverty was predominantly measured by
the proportion of a population living below the poverty line.
However, in the 1990s, economists began to examine spa-
tial dimensions to poverty, leading to the development of
poverty maps, which enable richer understanding of where
poverty is most acute, as well as where and how to intervene
(Atia 2014) (Poverty and Initiative 2022b).

While individual poverty indices such as income or con-
sumption expenditure are still commonly used today, the ex-
perience of poverty is more complex and can be felt across
several dimensions, whether in health, education, or other
factors. The multidimensional poverty index (MPI) was de-
veloped in 2010 by the Oxford Poverty and Human De-
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velopment Initiative (OPHI) and United Nations Develop-
ment Programme (UNDP). MPIs track deprivations across
three dimensions and 10 indicators including health (nutri-
tion, child mortality), education (years of schooling, school
attendance), and living standards (cooking fuel, sanitation,
drinking water, electricity, housing, assets), offering a higher
resolution lens into where and how poverty affects people
(Poverty and Initiative 2022a). Equation 1 delineates how
each indicator contributes to the overall MPI of a region,
where ch, ce, and cl denote indicators within the health,
education, and living standard dimensions, respectively. In
looking beyond income, 1.3 billion people in 107 develop-
ing countries are multidimensionally poor (United Nations
Development Programme 2020).
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Our motivations for undertaking this work are thus three-
fold. First, because existing studies such as (Ayush et al.
2021), (Blumenstock, Cadamuro, and On 2015), and (Yeh
et al. 2020) commonly index on only a single poverty mea-
sure such as income or consumption expenditure, we lever-
age MPIs and poverty mapping to provide richer insight into
poverty-stricken regions, better informing intervention pro-
grams and policies.

However, it can be difficult to collect such comprehen-
sive data for each MPI indicator at granular, regional and
subregional levels, as the data collection process typically
involves consumption and census surveys, which are expen-
sive in terms of costs, labor, and time. Thus, our work ex-
plores whether publicly accessible satellite imagery could
be directly used to predict MPI.

Finally, we focus our work on Nigeria given its poverty
profile, as 4 in 10 citizens live below the national poverty
line, and many lack access to education and basic infrastruc-
ture (World Bank 2022).

Related Work
Previous works have leveraged satellite imagery or other re-
mote sensing data for poverty prediction in various regions
and types of environments. They largely differ along a few
main axes, including prediction methodology, and poverty
and satellite imagery data used.



Poverty Prediction Methodologies
Several studies use proxies from satellite imagery or other
remote sensing data to map poverty. For example, (Perez
et al. 2017) and (Jean et al. 2016) employ nighttime light
intensity as an intermediate proxy to predict poverty in five
African countries. (Engstrom, Hersh, and Newhouse 2017)
extract features from high-resolution satellite imagery such
as number and density of buildings, number of cars, density
and length of roads, and roof material to estimate poverty
rates and consumption in Sri Lanka, and (Abelson, Varsh-
ney, and Sun 2014) similarly utilizes roof type as a proxy
for poverty. (Babenko et al. 2017) explores the predictive
power of land use estimates derived from satellite imagery.

Rather than relying on proxies, our work directly predicts
poverty using satellite imagery, saving on intermediary com-
putational steps and manual image annotations, which are
computationally and labor intensive tasks.

Poverty Measures
To the best of our knowledge, this study is also the first to
predict the multidimensional poverty index. Existing works
more commonly use single-dimensional measures such as
asset wealth index, household income, income per adult
equivalent, and consumption expenditure (Jean et al. 2016)
(Babenko et al. 2017) (Piaggesi et al. 2019) (Pandey, Agar-
wal, and Krishnan 2018). Our goal is to be able to give richer
insight into different ways people can experience poverty
across health, education, and living standards.

Satellite Imagery
Furthermore, previous works often rely on medium to high
spatial resolution, frequently commercial, satellite imagery
in order to accurately estimate poverty. Some commonly
used sources include Planet and DigitalGlobe imagery,
which provide commercial images at 3-5m and 50cm res-
olution, respectively, as well as Google Static Maps, which
offers 2.5m spatial resolution (Babenko et al. 2017) (Piag-
gesi et al. 2019).

Our work leverages publicly available, lower resolution
(10m) imagery from Sentinel-2 satellites and contributes a
new dataset covering all of Nigeria. As Sentinel-2 satellites
have imaged the globe continuously every five days since
2015, this data source provides the advantages of having a
consistent, reliable collection and release timeline, in addi-
tion to reducing costs and computational complexity.

Dataset
We use two datasets for this work, one consisting of MPI
data for Nigeria, and another which is a novel dataset we cu-
rate of publicly available Sentinel-2 satellite imagery span-
ning each of the 36 states of Nigeria and the Federal Capital
Territory (FCT), for a total of 37 regions. We describe each
one in further detail.

Multidimensional Poverty Indices
Our model is trained using multidimensional poverty index
data for Nigeria for 2021, which is publicly released by
OPHI and can be accessed through the Humanitarian Data

Exchange (Humanitarian Data Exchange 2021). Along with
the overall MPI for each region, it provides the contribu-
tions of each of the ten indicators that compose of the index,
as well as population data and estimates of populations in
poverty and deprivation intensity based on MPI. Figure 1
displays a choropleth map of overall MPI for Nigeria along
with its distribution.

Figure 1: Choropleth map of overall MPI for Nigeria (left)
along with its distribution (right).

Figure 2: A zoomed-out view of the cloudless Sentinel-2
satellite imagery obtained using Google Earth Engine for
Nigeria.

Sentinel-2 Satellite Imagery
We also contribute a new dataset of satellite imagery for all
of Nigeria. Using the Google Earth Engine API, we retrieve
publicly accessible Sentinel-2 Level-1C tiles and create mo-
saics for each of the 37 regions (Google Earth Engine 2022).
In order to obtain an unobstructed view of the land, we set
the cloud coverage percentage to be less than one percent.
Since image tiles meeting this cloud coverage criterion are
often taken at different points in time, they vary in consis-
tency for each visited location. To increase image consis-
tency across tiles while constructing each region’s mosaic,
we create composite images for each region by sampling the
median pixel value of each cloud-free tile for the years 2016
to 2022. Additionally, while the Sentinel-2 satellite imagery
has 13 spectral bands in total, we combine only the B4, B3,
and B2 bands, which correspond to red, green, and blue and
have a spatial resolution of 10m. In total, our dataset con-
sists of approximately 80 GB of image data. Figure 2 shows
a high-level aggregate view of the 37 image mosaics, span-
ning all of Nigeria.

Methods
Given our limited dataset of only 37 regions, we use a
method for augmenting our dataset that generalizes for any



Figure 3: Different ways of obtaining MPI predictions. top: direct method, bottom left: factor method, average first, bottom
right: factor method, average last. The components method is similar to the factor method but with different predictors.

Figure 4: Choropleth map of true MPI (right most image) and the overall MPI predictions for each of the five methods (ten right
images). From left to right: 1) direct method, 2) factor method, average first, 3) factor method, average last, 4) components,
average first 5) components, average last. The top row is using linear regression, while the bottom row uses the CNN.

situation in which there is a plethora of input data but lim-
ited response data. For each region, we uniformly sample 12
regions of 40 by 40 pixels (corresponding to roughly 400m
by 400m on the ground) of Sentinel-2 satellite imagery in
that region and label each image in the same region with the
same response value, where we experiment with the num-
ber of samples. This corresponds to roughly 0.01% of the
country’s land area. For each region, we use approximately
75% of the satellite imagery samples for training and the re-
maining 25% for testing. For our direct method, we directly
predict the MPI as the label. Now to obtain a prediction for
a state, we do an average of predictions of all MPI predic-
tions for satellite imagery within the state. For our factor
method, we predict separately both population in MPI and
deprivation intensity and obtain MPI estimates via the fol-
lowing formula:

MPI = (population in MPI) · (deprivation intensity)
(2)

However, note that we can either 1) compute for the entire
state an average of population in MPI and an average of de-

privation intensity and then use Equation (2) to obtain the
MPI for the state or 2) compute MPI from population in MPI
and deprivation intensity for each sample and then average
the MPIs to obtain the MPI for the state. We denote these two
sub-methods as average first (AF) and average last (AL), re-
spectively. Lastly, similar to the factor method, we can per-
form the procedure separately for each of the components
of MPI (nutrition, child mortality, ..., assets), then combine
them using equation Equation (1), which we call the compo-
nents method. This can also be done with an average first or
average last procedure. An overview of our methodology is
shown in Figure 3.

Models
For the predictive model that takes an input satellite imagery
and outputs either MPI, a factor of MPI, or a component of
MPI, we utilized a basic convolutional neural network with
two convolutional layers and two max-pool layers. Full de-
tails are in the Appendix. As a baseline, we also implement
a basic linear regression (LR) on the satellite pixel values.



Results and Discussion

Test Loss for Samples (MSE)
Response Value Linear Regression CNN
MPI 118.61 0.004
Population in MPI 641.75 127.87
Deprivation Intensity 809.48 0.088
Nutrition 444.79 1.973
Child Mortality 21.46 3.15
Years of Schooling 373.51 0.618
School Attendance 136.3 0.446
Cooking Fuel 242.21 0.992
Sanitation 225.18 0.084
Drinking Water 99.73 0.563
Electricity 153.83 0.023
Housing 362.78 0.359
Assets 69.04 0.835

Table 1: Results on samples from satellite imagery demon-
strate that the CNN is much more capable than the baseline
of predicting each response value. Note that some of the data
are on different scales, so the MSE should be compared rel-
atively between models.

Test Loss for MPI (MSE)
Linear Regression CNN

Direct 1.421 0.0126
Factor, AF 0.0557 0.00810
Factor, AL 6.492 0.0903
Components, AF 0.00656 0.000023
Components, AL 9.4393 0.0766

Table 2: Results for final MPI prediction for each of the 37
states using the various methods.

Given the varying contributions of the health, education,
and living standards dimensions of poverty, we investigate
how effectively our model can predict specific components
of MPI in addition to overall MPI from satellite imagery.
Table 1 shows the test results for MPI, population in MPI,
deprivation intensity, and each of the ten components of
MPI. Note that we did not scale the data, so MPI, Popu-
lation in MPI, and Deprivation Intensity are each on their
own scales (these quantities are sometimes measured in per-
centages, meaning that, if data is not scaled, all predictions
must be scaled down by a factor of 1002 when using for-
mulas such as Equation (2). However, the ten components
of MPI are necessarily on the same scale (Equation (1)). Of
the 10 components of MPI, child mortality seems to be the
most difficult to predict by the CNN, although interestingly
enough it is the best response value to predict out of the ten
components for linear regression. The linear regression still
performs many orders of magnitude worse than the CNN,
exhibiting the power of deep learning with satellite imagery.

Table 2 shows the results for our final MPI predictions us-
ing the different methods of direct prediction or combining
predictions for factors or components. As a general trend,

averaging first does better than averaging last across both
models, suggesting that averaging first might be a method of
mitigating extreme combinations of noisy predictions that
might compound outlier error. Moreover, when using aver-
aging first, the components method does better than the fac-
tor method, which does better than the direct method. In fact,
the components method using averaging first and the CNN
model matches the true MPI almost perfectly, suggesting
that individual prediction errors are mitigated and smoothed
out via Equation (1). However, this presents a trade-off in
the real world. The results suggest that more components of
data seem to lead to better MPI predictions (given structural
equations Equation (1) or Equation (2)), but this requires
more work to obtain.

These results demonstrate that, even using a CNN for pre-
diction with a basic architecture, we are able to accurately
predict MPI data for individual states in Nigeria. The main
hope is that this methodology can be extended to regions that
do not have a formally associated MPI. Given more compu-
tational power and using satellite imagery for regions that go
beyond national borders as training data, there is potential to
predict MPI for more granular regions (below even the state
level) or in regions of the world the OPHI has yet to assign
accurate MPIs.

Conclusions
To the best of our knowledge, this work makes the following
key contributions:
• We curate a new dataset of publicly available, cloudless

satellite imagery for all of Nigeria.
• We lay the first stone for utilizing deep learning meth-

ods for MPI prediction and metrics that go beyond single
indices such as consumption expenditure or wealth.

• We build a custom CNN model that accurately predicts
poverty directly from lower resolution (10m) satellite im-
agery, requiring only 0.01% of total land area, signif-
icantly reducing the amount of data and computational
power required.

• Our results confirm that it is possible to predict MPI us-
ing samples of satellite imagery from even basic deep
learning image models. Moreover, the more granular data
we have regarding the components of MPI, the better our
results. This suggests that satellite imagery could be a
viable and cheaper method for estimating MPI data com-
pared to current on-the-ground data collection methods.

Further work includes investigation of different sampling
methods of satellite imagery, understanding the variation in
prediction performance levels for the different components
of MPI, and, if more computational resources are available,
extending results to larger number of samples and larger
datasets of MPI. In addition, there are other poverty met-
rics that are useful for prediction, and it is worth finding out
which ones can be estimated cheaply via satellite imagery.
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Appendices
Model Details
We utilize a basic convolutional neural network (CNN) with
the following simple architecture: a convolutional layer with
1 input channel and 8 output channels, kernel size of 4, and
stride of 1, followed by a max-pool layer of kernel size 4 and
stride 2, followed by a second convolutional layer with 8 in-
put channels and 16 output channels and kernel size of 2 and
stride of 2, followed by a second max pool layer of kernel
size 4 and stride of 2, followed by a dense layer going from
5184 inputs to 10 outputs, and a final dense layer condens-
ing 10 inputs to one output. We train the CNN with mean
squared error (MSE) loss with the Adam optimizer (Kingma
and Ba 2014) with learning rate 2× 10−5 for 100 epochs.


