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Abstract

Motivated by the need for social distancing during a pan-
demic, we consider an approach to schedule the visitors of
a facility (e.g., a general store). Our algorithms take input
from the citizens and schedule the store’s discrete time-slots
based on their importance to visit the facility. We consider
indivisible customer job requests that take single or multi-
ple slots to complete. The salient properties of our approach
are: it (a) ensures social distancing by ensuring a maximum
population in a given time-slot at the facility, (b) prioritizes
individuals based on the importance of the jobs, (c) maintains
truthfulness of the reported importance by adding a cooling-
off period after their allocated time-slot, during which the
individual cannot re-access the same facility, (d) guarantees
voluntary participation of the citizens, and yet (e) is computa-
tionally tractable. The mechanisms we propose are prior-free.
The problem is NP-complete for indivisible multi-slot jobs,
and we provide a polynomial-time mechanism that is truth-
ful, individually rational, and approximately optimal. Experi-
ments with data collected from a store show that visitors with
more important (single-slot) jobs are allocated more preferred
slots, which comes at the cost of a longer cooling-off period
and significantly reduces social congestion. For the multi-slot
jobs, our mechanism yields reasonable approximation while
reducing the computation time significantly. While our so-
lutions are primarily motivated by the ongoing raging pan-
demic, our formulation naturally applies to a broad range of
scheduling settings.

Introduction
Pandemics show the limits of pharmaceutical interventions
(e.g., vaccines). Infectious diseases have appeared multiple
times in the history of the human race (Spanish flu, Ebola,
SARS, COVID-19, etc.) and vaccine-development took dif-
ferent approaches. However, the unique first defense had
always been a non-pharmaceutical intervention called so-
cial distancing, a term that has been added to all major En-
glish dictionaries in 2020. From the times of the Spanish flu
(1918) (Hatchett, Mecher, and Lipsitch 2007) to the recent
COVID-19 (Wilder-Smith and Freedman 2020) it has been
proved to be the most effective early solution.
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The method of social distancing, however, has evolved.
From mass exodus of population from the afflicted areas or
forcing ships to anchor for months before entering a port in
the early 20th century, we can now leverage the communi-
cation and AI technologies to efficiently execute social dis-
tancing without disrupting human habitation or occupation.
What we need is to socially schedule these individuals to
visit the public facilities and prevent them from overcrowd-
ing. This is the approach we consider in this paper.

In our setting, each customer has an infinite queue of jobs
that have different importances and lengths (both are pri-
vately known only to the customer). However, the customers
are myopic, i.e., worry only about the last unprocessed job.1
They experience a better value if the job is assigned their
preferred slots, but also a disutility to wait before submitting
their next job for allocation. All jobs are indivisible, i.e., has
to be completed once started. In this paper, we consider two
settings: (i) all jobs are of single time-slot length, (ii) differ-
ent jobs are of different integral time-slot lengths.

Though cast in the context of social scheduling for pan-
demics, a similar problem arises in general scheduling set-
tings, e.g., scheduling traffic in freeways or multi-ownership
computational jobs in a single-core processor. Since all such
settings have multiple agents competing for a common re-
source and the importance of the jobs are private, the so-
lutions involving truthful revelation in a computationally
tractable manner also apply to those settings.

This paper introduces a novel approach to pandemic con-
tainment using mechanism design that reduces the conges-
tion in facilities, satisfies various desirable theoretical prop-
erties, and exhibits fair performance in practice. The follow-
ing section details the contributions of this paper.

Brief Problem Description and Contributions

The opening hours of a facility are divided into periods (e.g.,
a day), each of which has multiple slots (e.g., every hour
when it is open). The customers have an unlimited number
of outstanding jobs to be processed in a sequence at the fa-
cility, and they report the valuations of the immediate un-

1A large number of studies in behavioral science point to such
myopic behavior (Langer and Weber 2005).



processed job.2 A valuation vij denotes agent i’s importance
for that job if it starts in slot j. Since this information is
private to agent i, a mechanism needs to elicit this truth-
fully. In a setting where the agents’ preferences are private,
if the mechanism has no additional structures (e.g., transfer
of individual payoff), only dictatorial mechanisms (where
a pre-selected agent’s favorite outcome is always selected)
are truthful (Roberts 1979, Thm 7.2). Therefore, the use of
transfers in some form is inevitable to ensure truthfulness of
the agents. However, for pandemic containment, the use of
money for scheduling citizens is unethical and illegal in cer-
tain countries. Hence, we use time-delay as a replacement of
money. Waiting time is often seen as a resource that individ-
uals agree to trade with (Leclerc, Schmitt, and Dube 1995).
Our scheduling approach will work in all places where pay-
ment can be replaced with a time-delay. Quite naturally, an
agent prefers to have a more valuable slot assigned to her
with less time-delay. We model the agents’ payoffs using the
well-known quasi-linear payoff model (Shoham and Leyton-
Brown 2008, Chap 10). This competitive scenario induces a
game where agents’ actions are to report the valuations. The
agents may overstate (or understate) their actual valuations.

The contributions of this paper can be summarized into
the following four major points:
▷ We show that the problem of maximizing the social wel-

fare (sum of the agents’ valuations) of the slot allocation
is computationally easy to solve for jobs with single-slot
length (Theorems 6 and 7) despite it being a combinato-
rial optimization problem.

▷ The single-slot case has the advantage that the delay
(cooling-off time) can be calculated via the Vickrey-
Clarke-Groves (VCG) mechanism (Vickrey 1961; Clarke
1971; Groves 1973) that ensures truthfulness and partic-
ipation of the agents.

▷ Our main contribution is in the multi-slot jobs. We show
that the welfare maximizing allocation of multi-slot jobs
is computationally hard (Theorem 1). We propose a poly-
nomial time mechanism (Theorem 4) which ensures par-
ticipation (Theorem 2), truthfulness (Theorem 3), and is
approximately optimal (Theorem 5).

▷ Our real and synthetic data experiments show that vis-
itors with more important jobs are allocated more pre-
ferred slots, which comes at the cost of a longer delay to
re-access the store. We show that social distancing is sig-
nificantly improved using users’ visit data from a store.
For the multi-slot jobs, our approximately optimal mech-
anism provides a reasonable approximation at a much re-
duced computational cost in practice.

The mechanisms presented in this paper are prior-free, i.e.,
they do not depend on the probabilistic information of the
valuations.

Related Work
The literature on pandemic control has widely documented
the quantitative benefits of social distancing (Glass et al.

2A typical shopper knows that she needs to visit a store many
times but precisely knows the importance of the immediate visit.

2006; Thunström et al. 2020; Fong et al. 2020). Studies re-
lated to the behaviour of individuals during pandemic show
that, despite the infection probability not decreasing, during
the equilibrium social distancing phase, individuals gradu-
ally reduce their social distancing efforts (Toxvaerd 2020;
Cavallo 2021).

In a slightly different strand of literature, the problem of
resource allocation with monetary transfers has been ad-
dressed to ensure truthfulness, e.g., in the context of job-
shop scheduling (Hajiaghayi 2005), which is also close to
our work. Lavi and Nisan (2004) study online supply curves
based auction of identical divisible goods that ensures truth-
fulness. In this paper, we consider an offline allocation prob-
lem but a comparatively more complex one (multiple re-
sources and indivisible tasks of different length). Chen et
al. (2016) propose a truthful approximate mechanism for on-
line allocation of job to machines where the job can resume
or restart once preempted. We provide a comparatively bet-
ter approximation ratio for efficiency, albeit in an offline set-
ting. The other related line of work involves designing incen-
tives in queueing problems with specific cost structures that
aim to find an efficient allocation truthfully and also ensures
budget balance (Mitra 2001; Bloch 2017; Ghosh, Long, and
Mitra 2020), while our model can admit costs of any struc-
ture.

In the context of job scheduling without money, Koutsou-
pias (2014) studies the allocation of independent tasks to
machines. Every machine reports the time it takes to execute
each task and the mechanism provides an approximation to
the minimum makespan in a truthful manner without money
for one task—which can be repeated for multiple tasks. In
this paper, we maximize the sum of the visitors’ valuations
which are independent of the length of the job and provide
an approximate mechanism for multiple tasks maintaining
the slot-capacity. Braverman et al. (2016) study a similar
problem of the allocation of medical treatments at hospi-
tals that have differential costs to patients and the patients
value the hospitals differently. The waiting time before be-
ing admitted to the hospital helps to get a stable matching.
However, the value of the agents do not change over slots
and hence is different from our setting.

Basic Setup and Single-slot Jobs
Define N := {1, . . . , n} to be the set of agents that are try-
ing to access a facility F . Time is divided into periods, and
each period is further divided into slots. The set of slots is
denoted by M := {1, . . . ,m}. Every slot has a maximum
capacity of k, which is decided by the region’s social dis-
tancing norm based on the size of the facility.3 A central
planner (e.g., an AI app) allocates these slots to the agents,
maintaining the capacity constraint. Every agent i has a car-
dinal preference vij ∈ R⩾0 (called the agent’s valuation) if
her immediate unprocessed job is allocated slot j. The valua-
tion implicitly reflects the importance of visiting the facility
for that agent. The valuation vector of i is represented by
vi = (vij , j ∈M) ∈ Rm

⩾0. In this paper, we consider differ-

3The analysis and results will follow even if the capacity kj
varies with the slots j ∈ M .



ent facilities independently. The joint facility-slot allocation
problem can be modeled as a similar problem with the ad-
ditional constraint that the same slot cannot be allocated to
the same agent at different facilities. We leave the detailed
analysis for it as future work.

The planner decides the allocation which can be repre-
sented as a matrix A = [aij ], where aij = 1, if agent i
is allotted slot j, and zero otherwise. We assume that every
agent can be assigned at most one slot in a period, and the
total number of agents assigned to each slot does not exceed
k. We denote the slot assigned to i by a∗i . The planner also
decides a delay d = (di, i ∈ N), where di is the time-delay
(in the same unit as the valuation) of agent i before which
she cannot make another request to the system. The net pay-
off of an agent is assumed to follow a standard quasi-linear
form (Shoham and Leyton-Brown 2008), which implies that
every agent wants a more valued slot to be assigned to her
and also wants to wait less.

ui((A, d), vi) = vi(A)− di, where vi(A) = via∗
i
. (1)

Denote the set of all allocations by A. The delays di ∈
R⩾0,∀i ∈ N . The planner does not know the valuations
of the agents. Therefore he needs the agents to report their
valuations to decide the allocation and the delay. This leaves
the opportunity for an agent to misrepresent her true valua-
tion. To distinguish, we use vij for the true valuation and v̂ij
for reported valuations. In the first part of this paper, we will
consider single-slot jobs and use the shorthand v = (vi)i∈N

to denote the true valuation profile represented as an m× n
real matrix, and v̂ to denote the reported valuation profile.
The notation v−i denotes the valuation profile of the agents
except i. The decision problem of the planner is, therefore,
formally captured by the following function.

DEFINITION 1 (Social Scheduling Function (SSF)). A social
scheduling function (SSF) is a mapping f : Rm×n → A×
Rn that maps the reported valuations to an allocation and
delay for every agent. Hence, f(v̂) = (A(v̂), d(v̂)), where
A is the allocation and d is the delay function.4

Preliminary Definitions
In this section, we formally define a few desirable properties
that a social scheduling function should satisfy. The proper-
ties address the issues of prioritization, truthfulness, volun-
tary participation, and computational complexity.

The first property ensures that the allocation is efficient in
each period, i.e., it maximizes the sum of the valuations of
all the agents.

DEFINITION 2 (Efficient Per Period (EPP)). An SSF f is
efficient per period (EPP) if at every period, it chooses an
allocation A∗ that maximizes the sum of the valuations of
all the agents. Formally, if f(·) = (A∗(·), d(·)), then

A∗(v) ∈ argmax
A∈A

∑
i∈N

∑
j∈M

vijaij . (2)

4We overload the notation A and d to denote both functions
and values of those functions, since their use will be clear from the
context.

However, since the planner can only access the reported
values v̂i’s, which can be different from the true vi’s, it is
necessary that the reported values are indeed the true values.
The following property ensures that the agents are incen-
tivized to ‘truthfully’ reveal this information irrespective of
the reports of the other agents.

DEFINITION 3 (Per Period Dominant Strategy Truthful). An
SSF f(·) = (A(·), d(·)) is truthful in dominant strategies per
period if for every vi, v̂i, v̂−i, and i ∈ N

vi(A(vi, v̂−i))− di(vi, v̂−i) ⩾ vi(A(v̂i, v̂−i))− di(v̂i, v̂−i).

The next property ensures that it is always weakly benefi-
cial for every rational agent to participate in such a mecha-
nism.

DEFINITION 4 (Individual Rationality). An SSF f(·) =
(A(·), d(·)) is individually rational if for every v, and i ∈ N

vi(A(v))− di(v) ⩾ 0.

Large facilities that have a large number of high-capacity
slots lead to an exponential increase in the size of the set A.
This largeness of A makes it challenging to find a solution
quickly. In a practical setting, where the allocations and de-
lays need to be decided before every period, it is desirable
to have an SSF that is computable in a time polynomial in
n and m so that it finishes the computation in a time negli-
gible to the time duration of the period. We consider algo-
rithms that are strongly polynomial (Grötschel, Lovász, and
Schrijver 1993). An SSF is strongly polynomial-time com-
putable if there exists an algorithm that computes it in a time
strongly polynomial in n and m, irrespective of the size of
the actual data, such as the value of the vis or k.

Periodic Mechanisms
We consider mechanisms that run at every period of this so-
cial scheduling problem. The agents report their valuations
at the beginning of every period. The planner decides the
schedules and delays.5 Since the agents have the opportu-
nity to overstate their importance to get a better slot allot-
ted to them, our approach that uses the ideas of mechanism
design (Börgers 2015) to this social scheduling problem is
useful. We use the delay as a surrogate for transferable util-
ity among the agents to satisfy several desirable properties.

For the single-slot job setup, the delays of agents are com-
puted via the standard VCG payment rule and we call the al-
location and delay together as the mechanism VCG-T (VCG
with Time delays). VCG-T mechanism is as follows.

Description of VCG-T. The SSF needs to decide on the
allocation A and the delay d. VCG-T computes the alloca-

5For mechanisms that consider the dynamic extension of such
allocation problems with finite or infinite horizon (Bergemann and
Välimäki 2010, e.g.), (a) the designer needs to know the transition
probabilities, (b) equilibrium guarantees are weaker, and (c) are
computationally expensive. These factors made us restrict our at-
tention to periodic mechanisms.



tion as follows.

argmax
A

∑
j∈M

∑
i∈N

vijaij

s.t.
∑
j∈M

aij ⩽ 1, ∀i ∈ N ;
∑
i∈N

aij ⩽ k, ∀j ∈M

aij ⩾ 0, ∀i ∈ N, j ∈M.

(3)

This is an LP relaxation of the actual allocation problem,
which allows aijs to be only in {0, 1}. We will show that
this is without loss of optimality since the solution to LP (3)
will always be integral and will coincide with the solution of
the corresponding IP.

The delays of agents are computed via the standard VCG
payment rule. Denote the optimal allocation of LP (3) by
A∗(v). Also, denote the allocation given by LP (3) when
agent i is removed from the system by A∗

−i(v−i). For agent
i, the delay is given by,

di :=
∑

ℓ∈N\{i}

vℓ(A
∗
−i)−

∑
ℓ∈N\{i}

vℓ(A
∗). (4)

The mechanism in every period is described in Algorithm 1.

Algorithm 1: VCG-T in every period

1: Input: for every agent i ∈ N , the value v̂i
2: compute A∗(v̂) (Equation (3)) as the allocation
3: charge a delay di(v̂) (Equation (4)) to every i ∈ N

for which they cannot access the scheduling mechanism
again

4: Output: A∗(v̂) and d(v̂)

We show that the VCG-T mechanism for single-slot job is
per period dominant strategy truthful, individually rational,
and runs in strongly polynomial time. Due to the page lim-
itation, we put the results in the appendices available in the
supplementary material.

The main contribution of this paper is to schedule the
multi-slot jobs, that are relatively difficult to schedule. We
present the our results for multi-slot jobs in the next section.

Multi-slot Jobs
In this section, we consider jobs with different lengths, i.e.,
for agent i, the job may be of length li ⩾ 1. Since the job
is indivisible, the entire length li of the job requires contigu-
ous slots for execution within the period. For example, an
individual may visit a facility (e.g., a shopping mall) for a
quick shopping, which may take a shorter duration, or for
dining, which may take longer. However, all these jobs are
indivisible, and the allocation needs to provide contiguous
time-slots to that agent. The agents report the valuations and
lengths of their jobs. We show that the optimal allocation
problem in such a setting can be computationally intractable.
The notation is mildly updated as follows to accommodate
the multi-slot jobs.

Each agent i gets a valuation vij for her last unprocessed
job if her job begins at slot j, and has a length li. The value

of the job is zero if (a) it starts at any of the last (li−1) time-
slots of the period (since it cannot finish within the period),
and (b) if the job is unallocated.

A matrix V consists of the agents’ reported valuations,
and L consists of the lengths of agents’ jobs. Allocation is
given by the matrix A = [aij ], where aij = 1 if agent i’s
job starts at slot j, else aij = 0, and ai represents the slot
allocation vector for agent i. Keeping all other notations as
before, we define the MIA problem as follows.

DEFINITION 5 (Multi-slot Indivisible jobs Allocation prob-
lem (MIA)). : Given (N,M, V, L, k), find an allocation A,
such that

∑
i∈N

∑
j∈M vij(aij) is maximum, subject to the

constraints that the total number of jobs allocated in a slot
does not exceed the capacity of the slot, and each job i is as-
signed to at most li contiguous slots. Mathematically, MIA
is given by the following integer program (IP).

argmax
A

∑
i∈N

∑
j∈M

vij aij

s.t.
∑
i∈N

∑
p∈M

j∈[p,p+li−1]

aip ⩽ k,∀j ∈M,

∑
j∈M

aij ⩽ 1,∀i ∈ N ; aij ∈ {0, 1},∀i ∈ N, ∀j ∈M

(5)

The first set of inequalities insure that the number of job
to be processed in a slot does not exceed the slot capacity
k. We sum over every job i ∈ N and check if it is under
execution at j, for every j ∈ M . A job i is under execution
at slot j, if it is allocated at a slot p s.t. j ⩽ p + li − 1.
The second set of inequalities ensure that no job is allocated
more than once.

We show that MIA is computationally intractable by per-
forming a polynomial reduction from the Multi-Unit Com-
binatorial Auction (MUCA), which is NP-complete.
Description of MUCA: Consider a multiset M = (G, y),
where G = {1, 2, 3, . . . , g} is a set of goods and y is a
function, y : G → Z⩾0 representing the multiplicity or
the number of available units of the elements of G in M.
Each agent i ∈ N = {1, 2, . . . , n} is a multi-minded bid-
der, which means i has a positive valuation wi(·) for mul-
tiple bundles of available goods. We call the set of bundles
for which agent i has a positive valuation to be the demand
set of i, represented by Di. The valuation function is such
that, wi(q) ∈ R⩾0,∀q ∈ Di. We use the following notation
D = [Di]i∈N and, Wi = (wi(q))q∈Di

, W = [Wi]i∈N . In
this paper we assume that, every agent demands at most one
unit of every good. With this assumption, an allocation of
a bundle of goods to the agents is represented as a matrix
S = [siq], where siq = 1, if the bundle q ∈ Di is allocated
to i, else siq = 0. For an allocation S, every agent i gets a
valuation, wi(S)=

∑
q∈Di

wi(q) siq , otherwise wi(S) = 0.
The formal definition is as follows.

DEFINITION 6 (Multi-Unit Combinatorial Auction (MUCA)).
Given (N ,M,W,D), find an allocation S of goods to the
agents such that

∑
i∈N

∑
q∈Di

wi(q) siq is maximum, and
the total units of good j ∈ G allocated to the agents does not



exceed j’s availability y(j), and every agent i is assigned at
most one of the demanded bundle from Di. Mathematically,
MUCA is given by the following integer program (IP):

argmax
S

∑
i∈N

∑
q∈Di

wi(q) siq

s.t.
∑
i∈N

∑
q∈Di
j∈q

siq ⩽ y(j),∀j ∈ G

∑
q∈Di

siq ⩽ 1,∀i ∈ N ; siq ∈ {0, 1},∀i ∈ N ,∀q ∈ Di

(6)

The reduction of MIA to MUCA proceeds as follows. For a
given instance (N,M, V, L, k) of MIA, construct an instance
of MUCA(N ,M,W,D) problem such that, the set of agents
N is N , the set of goods G is the set of the slots M within
the period, where y(j) = k, ∀j ∈ M . For every i ∈ N ,
the demand set Di consists of (m− li + 1) distinct bundles.
Each of the bundles in Di is of size li and consists of li
contiguous slots. We denote a bundle as qj if it contains li
contiguous slots starting from slot j, and wi(qj) is equal to
vij (the valuation i ∈ N gets if her job starts at slot j ∈M ).
The above construction is done in polynomial steps of the
input size. We construct a solution of MIA from a solution of
MUCA in the following way: for every qj ∈ Di and i ∈ N ,
if siqj = 1 then, aij = 1 for every i ∈ N and j ∈ M .
Similarly, we construct a solution of MUCA from a solution
MIA in the following way: if aij = 1 for i ∈ N and j ∈ M
then, siqj = 1 for every qj ∈ Di and i ∈ N . The following
lemma shows that an optimal solution of MIA is an optimal
solution of MUCA and vice-versa.

LEMMA 1. Let S∗ is a solution for MUCA for a multiset of
goods M, and A∗ is such that, a∗ij = 1 for i ∈ N and
j ∈M , if and only if s∗iqj = 1 in S∗ for i ∈ N and qj ∈ Di,
then A∗ is an optimal solution for MIA if and only if S∗ is
an optimal solution for MUCA.

Since MUCA is NP-complete (Cramton et al. 2004;
Rothkopf, Pekeč, and Harstad 1998), using Lemma 1, we
get the following theorem.

THEOREM 1. MIA is NP-complete.

However, it is possible to find an approximately efficient
allocation in polynomial time that is truthful and individ-
ually rational. To find that, we leverage the approximation
algorithm of MUCA due to Bartal et al. (2003, Theorem 3).
Using Lemma 1 and the next few results, we prove that
there exists a polynomial time truthful mechanism (MIA
Approximation Algorithm or MAA) to achieve O

(
km

1
k−2

)
approximation to the optimal solution of MIA.

The operational principle of MAA is a sequential dicta-
torship, where the sequence is an arbitrary order (WLOG
1, 2, . . . , n) of the agents and is independent of the informa-
tion submitted by them. The mechanism comes with a price6

vector which is updated while iterating over the agents in
the sequence. We use a superscript i to denote the the price

6The terms price and delay are equivalent in the rest of the
paper.

Algorithm 2: MAA in every period

1: Procedure MAA(N,M, V, L, k)
2: b← arg

i
max

i∈N,j∈M
vij ; vmax ← max

i∈N,j∈M
vij ; //b is the

agent with highest valuation (vmax) for any slot.//
r ← (6m(k − 1))

1
k−2

3: Q0 ← [0, 0, . . . ,m times]
4: a∗bs′ = 1, where s′ ← argmax

j∈M
(vbj); // For b allocate

its highest valued slot.//
a∗bj = 0, ∀j ∈M \ {s′}; Pb = v−b

max

5: for i = {1, 2, . . . , n} and i ̸= b do
6: for j = {1, 2, . . . ,m} do
7: P i

j ← π0 · rQ
i−1
j

8: end for
9: a∗is = 1, where s← max(P i, vi) (Equation (7))

10: a∗ij = 0, ∀j ∈M \ {s}
11: Pi ←

∑s+li−1
j=s P i

j

12: for j = {1, 2, . . . ,m} do
13: if j ∈ [s, s+ li − 1] then
14: Qi

j ← Q
i−1
j + 1

15: else
16: Qi

j ← Q
i−1
j

17: end if
18: end for
19: end for
20: return a∗,P

faced by the agent i for slot j, P i
j , when i’s turn comes.

Hence, P i = [P i
j ]j∈M denotes the price vector seen by i.

The mechanism also uses a function max that returns the slot
s that maximizes agent i’s utility given her valuation vector
vi and the price vector P i when her job of length li starts
from slot s. Mathematically, max is defined as follows:

max(vi, P
i) = argmax

s∈M
(vis −

∑
j∈[s,s+li−1]

P i
j ) (7)

MAA maintains a vector Qi = [Qi
j ]j∈M , where Qi

j denotes
the current allocated population of the slot j after allocating
slots to i. First, MAA picks the agent b that has the maximum
valuation vmax for any slot, and initializesQ0

j = 0,∀j ∈M .
The initial price of every slot is set to π0 := vmax

6m(k−1) and

a constant factor r = (6m(k − 1))
1

k−2 is defined. Consider
an arbitrary order (WLOG (1, 2, . . . , n)) of the agents. For
each agent i ̸= b in sequence, the price P i

j is computed us-
ingQi−1

j , r, and π0 such that the prices of the slots increase
by a multiplicative factor of a suitable exponent of r such
that the prices for more congested slots are higher. Then the
highest utility-deriving slot s to start i’s job is found using
max, and the corresponding allocation vector for i is rep-
resented as a∗i , where a∗is = 1, a∗ij = 0,∀j ̸= s. The total
price (or delay) charged to i is denoted by Pi and is equal
to

∑
j∈[s,s+li−1] P

i
j . The vector Qi is updated after the al-

location of slots to agent i. The agent b gets her most val-
ued starting slot and pays the maximum valuation among all



other agents and slots, which is represented by v−b
max.

An important feature of Algorithm 2 is that it does not
explicitly check the capacity constraint. However, we show
that the choices of π0 and r implicitly maintains that in the
following result. The units of slot j after Algorithm 2 exe-
cutes that are occupied by agents except b are Q∗

j .

LEMMA 2. Let π0, r, δ > 0 be such that π0r
δ ⩾ vmax, then

Q∗
j ⩽ δ + 1. This implies that MAA maintains the capacity

constraints for each slot for δ = k − 2.

Proof. Assume for contradiction that Q∗
j > δ + 1 and let

i be the first customer due to which this contradiction takes
place for some slot j, i.e., Qi

j > δ + 1. Since each customer
does not get more than one unit of any slot, then it must
be that Qi−1

j > δ. Hence, for slot j, the following holds:
P i
j > π0r

δ ⩾ vmax ⩾ maxj∈M vij . This makes i’s to-
tal price for li contiguous slots including slot j to be more
than her corresponding total valuation for those slots. This
contradicts the definition of max since the utility becomes
negative for agent i.

The allocation to b is at most one unit from each slot. With
carefully choosing π0 and r, we bound the units of any slot
allocated to all the other agents, Q∗

j to (k − 1), maintaining
the possibility of the maximum use of every slot.

Since max allocates a slot only if that allocation increases
the agent’s utility, the following result holds.
THEOREM 2. MAA is individually rational.

Next, we show that misreporting the private information
(vi, li) is never beneficial for any agent i.
THEOREM 3. In MAA, reporting vi and li truthfully in every
period is a dominant strategy for all i ∈ N .

Proof. For the agent b, we see that the utility is that of a
second price auction and is independent of its length report.
Since for second price auction revealing valuation truthfully
is a dominant strategy therefore truthfully revealing valua-
tion and length is a dominant strategy for b.

For the other agents, note that MAA considers the agents
sequentially and allocates the utility-maximizing available
slots in their turn. The order of the agents in MAA is inde-
pendent of the valuations and lengths of the jobs. Consider
agent i. When her turn comes, the mechanism picks the slots
that give the maximum difference between the valuation of i
for those slots and the current prices of those slots. Note that,
the prices of those allocated slots are not dependent on the
valuation or length reported by agent i (rather it is depen-
dent on the reports of the previous agents in the sequence
and b), and the mechanism allocates her the optimal set of
slots. Hence, by misreporting the valuation vi, agent i can
either continue to get the same slots or get a worse set of
slots w.r.t. her true valuation. Hence, there is no incentive
for i to misreport her valuation.

Misreporting length: If l̂i < li, MAA allocates only l̂i num-
ber of contiguous slots to i (which can have zero value as l̂i is
not sufficient for completion of her job) and i can get a neg-
ative payoff as she has to pay Pi (which is non-negative). If
l̂i > li, then MAA allocates more slots than i actually needs.

This allocation does not increase agent i’s valuation, but in-
creases the price since now she will be charged for l̂i slots
which is larger than the true length.

Combining the above two arguments that hold for all i ∈
N irrespective of the reports of the other agents, we get the
claim.

To find the best slot for an agent, max checks the fea-
sibility constraints and computes the allocation considering
the valuation and the current price of the slots. As there are
(m−li+1) possible allocations, max requires at most O(m)
time for every agent i. Therefore, the following result on the
complexity of MAA holds.

THEOREM 4. MAA has time complexity O(mn).

To show the approximation factor of MAA, we need a few
more results. Due to paucity of space, we present those re-
sults (similar to the ones by Bartal et al. (2003), modified
according to MIA) in supplementary material. These results
help us prove the main theorem of this section.

THEOREM 5. There exists a polynomial time (O(mn)), in-
centive compatible, and individually rational mechanism to
achieve O(km

1
k−2 ) approximation to optimal solution for

MIA.

The result above shows the existence of an approximately
efficient mechanism that satisfies the other three desirable
properties. The question of finding a lower bound on the ap-
proximation ratio remains open.

Experiments
While the mechanisms presented in this paper satisfy sev-
eral desirable properties of a social scheduling mechanism
for indivisible single and multiple slot jobs, its prioritizing
profile for different classes of importance, costs of prioritiza-
tion, and reduction in social congestion are not theoretically
captured. In this section, we investigate these properties us-
ing real and synthetic datasets. The real dataset we collected
from a store gave us only the checkout times. In absence
of the length information of the visits, we resorted to the
single-slot job model (with hourly slots) and tested the per-
formance of VCG-T on this data (§). For multi-slot jobs, we
simulated MAA to find the suboptimality and the reduction
in the running time (§). For these experiments, we consider
three discrete levels of valuations of the agents denoted by
3, 2, and 1, which can be interpreted as high, medium, and
low respectively. The numbers represent the agent’s valua-
tion if they are allocated their most preferred slot. We used
Gurobi (Gurobi Optimization 2020) under an academic li-
cense for all experiments.

Reduction in the social congestion
We consider a real data of customer footfall in a general store
that we have collected from the store (the dataset will be
made publicly available post publication). The dataset con-
tains the customers’ hourly checkout (billing) time from 7
AM to 9 PM (opening hours of the store) for the whole
month of July 2020. Since the dataset was anonymized for
customer identification, we have assumed that the billing



timestamps are unique users for a day. Given the size of the
store, around 32 people an hour should be a fair capacity to
maintain social distance. However, the data shows that the
monthly average during the periods 5-6 PM, 6-7 PM, and
7-8 PM were 38.00, 48.63, and 52.83 respectively. Interest-
ingly, the monthly average of the population in an hour is
26.5, which is well within the safety limits. Therefore, this
dataset works as a perfect example where users can benefit
significantly from social scheduling.
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Figure 1: Social congestion reduction, slot capacities 24
(top) and 30 (bottom).

We divide the store opening hours into 14 hourly slots
between 7 AM to 9 PM. For each day the slots are sorted
in decreasing order of footfall on that day. We fix this or-
der of the slots as the preference order of each agent for that
day. The valuations of every customer for her most preferred
slot is drawn from a distribution {high:0.1, medium:0.3,
low:0.6}. The valuations for the other slots are assumed to
decrease with a multiplicative factor δ = 0.5 in the order
of the slot preference, i.e., the valuation for the t-th most
preferred slot of a medium agent will be 2δt−1. In this ex-
periment, if a user is not allocated a slot on a certain day,
she is given an option to update her importance and prefer-
ences for the next day. For the experiments, we assume that
the user increases the importance by one level, e.g., low be-
comes medium, and keeps the slot preferences the same.
After three consecutive days, if an agent is not allocated, she
is considered ‘non-allocated,’ and alternative arrangements
(e.g., home delivery) are made. Figure 1 shows the compar-
ison of the average current population with that allocated
by VCG-T for slot capacities of 24 (above) and 30 (below).
The figures also show the daily non-allocated population in
red. Each plot in this section shows the average values with
95% confidence interval. The plots show the trade-off be-
tween better social distancing (lower slot capacity) and its
cost (non-allocation). However, in both these cases, the so-
cial congestion is reduced by approximately 50% during the
rush hours.
VCG-T also prioritizes the jobs at a cost. Figure 2 shows

the allocated slot preference and the delays for the three
difference classes of valuations for the slot capacity 30. It
shows that a higher valuation comes with a higher delay.
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Figure 2: Priority and delay trade-off of VCG-T.

Suboptimality vs Complexity Reduction (MAA)
The sub-optimality of MAA (Algorithm 2) was obtained for
a worst-case scenario in §. Here we investigate the sub-
optimality of MAA and the amount of time it reduces w.r.t.
a brute-force algorithm that finds the optimal allocation of
the slots. The top plot of Figure 3 shows the percentage re-
duction ((tOPT−tMAA)/tOPT) in the running time of MAA com-
pared to the optimal mechanism, where tOPT and tMAA are the
running times of the optimal and MAA mechanisms respec-
tively. The bottom plot shows the ratio of the optimal so-
cial welfare to the welfare yielded by MAA. For each agent a
slot preference order is generated uniformly at random from
the set of all feasible preference orders over the slots. Val-
uations for most preferred slot is generated from a uniform
distribution over {high,medium,low} and for other slots
is assumed to decrease with a multiplicative factor δ = 0.5,
same as that in §. The length of jobs are generated randomly
with uniform distribution in range 1 to m. The experiment
is run with n = 6, k = 5, and m varying from 3 to 8. For
each value of m, the experiment is repeated for 100 valua-
tion matrix and length vector pairs. The parameters m,n, k
are chosen such that the optimal mechanism is computable
in a reasonable time, yet the experiment yields an insightful
result. We see that MAA reduces the running time by more
than 99.5% and yields an approximation of roughly 1.75 on
an average.
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Figure 3: Running time and approximation factor trade-off
for MAA.
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Appendix
VCG-T for Single-slot Jobs

We first show that the allocation given by VCG-T indeed
maximizes per-period social welfare.

THEOREM 6. The allocation of VCG-T given by LP (3) al-
ways gives integral solutions.

Proof. Consider the vector x⊤ =
(a11, . . . , a1m, . . . , an1, . . . , anm), i.e., the rows of A
linearized as a vector. We can write the constraints of LP (3)
in using a (n+m)× nm constraint matrix, s.t.,

1 . . . 1 0 . . . 0 0 . . . 0
0 . . . 0 1 . . . 1 0 . . . 0

. . .
1 . . . 0 1 . . . 0 1 . . . 0
0 1 . . . 0 1 . . . 0 1 0

. . .

x ⩽


1
...
k
...


Denote the matrix on the LHS by C. The first n and the next
m rows correspond to the first and second set of constraints
of LP (3) respectively. We show that C is totally unimod-
ular (TU), which is sufficient to conclude that LP (3) has
integral solutions. We use the Ghouila-Houri characteriza-
tion (Camion 1965) to prove that C is TU. According to
this characterization, a p × q matrix C is TU if and only if
each set R ⊆ {1, 2, · · · , p} can be partitioned into two sets
R1 and R2, such that,

∑
i∈R1

aij −
∑

i∈R2

aij ∈ {1, 0,−1}, for

j = 1, 2, · · · , q. Note that, in C every column has two 1’s,
one in the first n rows and one in the next m rows. Pick any
subset R of the rows, construct the R1 to be the rows that
come from the first n rows, and R2 to be the rows that come
from the last m rows (one of these partitions can be empty).
Clearly, the difference in each column of the rows R will lie
in {1, 0,−1}. Hence proved.

The result above shows that the optimal solution of LP (3)
is an optimal solution of the corresponding integer program
that maximizes the per-period social welfare. Hence, we
conclude the following.

COROLLARY 1. VCG-T is EPP.

Even though the LP formulation of VCG-T is without loss
of optimality, in general, LPs can be weakly polynomial,
i.e., the space used by the algorithm may not be bounded
by a polynomial in the size of the input. However, we show
that an even stronger result holds for VCG-T. The forthcom-
ing results show that the allocation and delays of VCG-T
are strongly polynomial. To show this, we will first reduce
the allocation problem (LP (3)) to a minimum weight b-
matching problem, which is known to be strongly polyno-
mial (Schrijver 2003).

Consider an edge-weighted bipartite graph (N,M,E),
where N and M are the agent set and set of slots respec-
tively. The set E denotes the edges (i, j) with weights −vij .
The matching constraints are given by bi = 1,∀i ∈ N , and
bj = k, ∀j ∈M .

LEMMA 3. Let E∗ ⊆ E be a perfect b-matching in
(N,M,E) and A∗ = [a∗ij ]i∈N,j∈M be an allocation where
a∗ij = 1 ⇔ (i, j) ∈ E∗. The matching E∗ is a minimum
weight perfect b-matching iff A∗ is an optimal solution to
LP (3).

Proof. We prove this via contradiction. Suppose A∗ is not
an optimal solution to LP (3), i.e., there exists A′ which sat-
isfies the constraints and yet gives a larger value to the objec-
tive function than that of A. Hence,

∑
j∈M

∑
i∈N vija

′
ij >∑

j∈M

∑
i∈N vija

∗
ij . Consider the edge set E′ correspond-

ing to A′. Clearly this is a perfect b-matching, since A′ sat-
isfies the constraints of LP (3), and E′ gives a lower weight
than E∗, which proves that E∗ is not the minimum weight
perfect b-matching. The implications can be reversed to ob-
tain the other direction of the proof.

Note that the delays are calculated by solving an equiv-
alent LP like LP (3) with one less agent. Therefore, each
of these LPs is strongly polynomial, and the planner needs
to solve n of them. The computation of each delay needs
the addition of 2(n − 1) terms and one subtraction. Hence,
the number of computations is polynomial in the number
of numbers in the input instance, and the space required is
polynomial in the input size. Therefore we conclude the fol-
lowing.
COROLLARY 2. The computation of the delays in VCG-T is
strongly polynomial.

Combining Theorem 6, Lemma 3, and Corollary 2, we get
the following result.
THEOREM 7. VCG-T provides a combinatorial, strongly
polynomial algorithm for computing a social schedule and
delays.

Since VCG-T uses the VCG payment expression to com-
pute the time delay and because the allocated slots are goods
to the agents, the following two facts follow from the known
properties of the VCG mechanism.
FACT 1. VCG-T is per period dominant strategy truthful.

Proof. This proof is a standard exercise in the line of the
proof for Vickery-Clarke-Groves (VCG) mechanism (Vick-
rey 1961; Clarke 1971; Groves 1973).

Let us assume for the contradiction that, there exist an
agent i for having true valuations for the slots as, vi, but
misreports it as v′i(the corresponding value function is v′i),
and gets better utility. Suppose A(v′i, v−i) = A′ and
A(vi, v−i) = A∗. The utility of i for A′ is:

vi(A
′)− di(v

′
i, v−i)

= vi(A
′)−

∑
ℓ∈N\{i}

vℓ(A(v−i)) +
∑

ℓ∈N\{i}

vℓ(A
′
)

=
∑
ℓ∈N

vℓ(A
′
)−

∑
ℓ∈N\{i}

vℓ(A(v−i))

Similarly, the utility of i for A∗ is:

=
∑
ℓ∈N

vℓ(A
∗)−

∑
ℓ∈N\{i}

vℓ(A(v−i))



If i gets better utility by misreporting her valuation as v′(.),
then ∑

ℓ∈N

vℓ(A
′
) >

∑
ℓ∈N

vℓ(A
∗)

The above inequality leads to the contradiction that A∗ is op-
timal for the reported valuation (vi, v−i). Therefore, VCG-T
is dominant strategy truthful in every period.

FACT 2. VCG-T is individually rational for every agent.

Proof. This proof is a standard exercise in the line of the
proof for Vickery-Clarke-Groves (VCG) mechanism (Vick-
rey 1961; Clarke 1971; Groves 1973).

Let us assume for the contradiction that, there exist an
agent i for having true valuations for the slots as, vi, but
misreports it as v′i(the corresponding value function is v′i),
and gets better utility. Suppose A(v′i, v−i) = A′ and
A(vi, v−i) = A∗. The utility of i for A′ is:

vi(A
′)− di(v

′
i, v−i)

= vi(A
′)−

∑
ℓ∈N\{i}

vℓ(A(v−i)) +
∑

ℓ∈N\{i}

vℓ(A
′
)

=
∑
ℓ∈N

vℓ(A
′
)−

∑
ℓ∈N\{i}

vℓ(A(v−i))

Similarly, the utility of i for A∗ is:

=
∑
ℓ∈N

vℓ(A
∗)−

∑
ℓ∈N\{i}

vℓ(A(v−i))

If i gets better utility by misreporting her valuation as v′(.),
then ∑

ℓ∈N

vℓ(A
′
) >

∑
ℓ∈N

vℓ(A
∗)

The above inequality leads to the contradiction that A∗ is op-
timal for the reported valuation (vi, v−i). Therefore, VCG-T
is dominant strategy truthful in every period.

Proof of Lemma 1
Proof. Suppose the above statement is not true and hence
A

′
but not A∗ is an optimal solution for MIA.∑

i∈N

∑
j∈M

vij a
′
ij ⩾

∑
i∈N

∑
j∈M

vij a
∗
ij

As wi(qj) = vij , and a∗ij = 1 only if s∗iqj = 1, with the
constructed S ′

corresponding to A
′

the following inequality
holds, ∑

i∈N

∑
qj∈Di

wi(qj) s
′

iqj ⩾
∑
i∈N

∑
qj∈Di

wi(qj) s
∗
iqj

The above equation results in a contradiction that S∗ is an
optimal solution for MUCA.

Since each step of the above proof has implications in
both directions, the other direction of the proof is im-
plied.

Restated results from the literature
In this section, we will restate a few results from (Bartal,
Gonen, and Nisan 2003), which will help us prove the ap-
proximation factor in Theorem 5. The lemma and section
numbers of these results in the original paper are mentioned
within parentheses in the restated lemmata.
LEMMA 4 ( (Bartal, Gonen, and Nisan 2003, Section
4.2, Lemma 4)). For every agent i, vi(a

∗
i ) ⩾ vi(a

′

i) −∑
j∈[s,s+li−1] s.t. a′

is=1 P
∗
j for every allocation a

′

i, where,
P ∗ is the vector of prices of slots at the end of Algorithm 2.7

Let V (ALG) and V (OPT ) denotes the sum of valuations
of customers for the allocation A∗ given by MAA, and that
for the optimal allocation (say Â) respectively. Similarly,
V (ALG−b) and V (OPT−b) represents the sum of valua-
tions of every agent except b according to A∗ and Â re-
spectively. Summing it for all the agent i ∈ N , we get the
following corollary.

COROLLARY 3. V (ALG−b) ⩾ V (OPT−b) − (k −
1)

∑
j∈M

P ∗
j

The following result provides a lower bound on
V (ALG−b).
LEMMA 5 ((Bartal, Gonen, and Nisan 2003, Section 4.2,
Lemma 5)). V (ALG−b) ⩾

∑
j∈M P∗

j −mπ0

r−1

Combining Lemma 5 and Corollary 3, we state the fol-
lowing result.

LEMMA 6. If m(k−1)π0 ⩾ V (OPT−b)
2 , then 2((k−1)(r−

1) + 1) ⩾ V (OPT−b)/V (ALG−b).
Following the conditions in Lemma 2 and Lemma 6, we

fix π0 = vmax

6m(k−1) , r = (6m(k − 1))
1

k−2 . We restate the
following result about the approximation ratio from (Bartal,
Gonen, and Nisan 2003).
LEMMA 7 ((Bartal, Gonen, and Nisan 2003, Section 5,
Lemma 8)). The approximation ratio of Algorithm 2 is
3((k − 1)(r − 1) + 1).

Finally, combining Lemmas 6 and 7, we get Theorem 5.

Additional Experimental Results
Prioritizing profile and its cost
In this section, we investigate what the typical priority slots
allotted to an agent of a specific class in VCG-T are. The top
plot of Figure 4 shows the agents’ allocated slot preferences
(mean with one standard deviation) versus the population
(n) plot where m = 5, k = 4, and δ = 0.65. The importance
of an agent is picked uniformly at random. Values of n vary
between 2 to 1.1mk in steps of 1 (for a population beyond
mk, some agents have to be dropped). The experiment is re-
peated 100 times for every n. The plot shows that the higher
the importance, the lower is the allocated slot preference for
the agents, which is desirable.

7With a slight abuse of notation, we denote [a, b] to be the in-
tegers between a and b, where a < b.
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Figure 4: Priority-delay trade-off for VCG-T.

2 3 4 5 6 7 8 9 10 11 12 13 14
Number of slots

100

101

102

Co
m

pu
ta

tio
n 

tim
e 

(s
ec

)

Figure 5: Computation times of VCG-T.

However, VCG-T does the prioritized allocations of the
agents at the cost of their delays. The bottom plot of Fig-
ure 4 shows the corresponding delays decided by VCG-T
for each of these three classes. The plot shows that an early
slot allocation of an agent because of her importance also
comes with a longer delay and shows the trade-off between
these two decisions.

Scalability
This section examines VCG-T’s computation time for find-
ing the allocation and delays for a realistic population. We
run VCG-T in Python for different number of slots (m) with
slot capacity (k) being 12. For every m, we fixed n = mk
and repeated the experiment 10n times. Figure 5 shows the
growth of the computation time of the mechanism. As a
reference, to solve the allocation and delays for the store
to study reduction in social congestion (Figure 1), it takes
about 100 secs. The simulations have been performed in a
64-bit Ubuntu 18.04 LTS machine with Intel(R) Core(TM)
i7-7700HQ CPU @2.80GHz quad-core processors and 16
GB RAM.


