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Abstract

Underserved communities face critical health challenges due
to lack of access to timely and reliable information. Non-
governmental organizations are leveraging the widespread
use of cellphones to combat these healthcare challenges and
spread preventative awareness. The health workers at these
organizations reach out individually to beneficiaries; however
such programs still suffer from declining engagement.
We have deployed SAHELI, a system to efficiently utilize the
limited availability of health workers for improving maternal
and child health in India. SAHELI uses the Restless Multi-
armed Bandit (RMAB) framework to identify beneficiaries
for outreach. It is the first deployed application for RMABs
in public health, and is already in continuous use by our part-
ner NGO, ARMMAN. We have already reached ∼ 100K
beneficiaries with SAHELI, and are on track to serve 1 mil-
lion beneficiaries by the end of 2023. This scale and impact
has been achieved through multiple innovations in the RMAB
model and its development, in preparation of real world data,
and in deployment practices; and through careful consider-
ation of responsible AI practices. Specifically, in this paper,
we describe our approach to learn from past data to improve
the performance of SAHELI’s RMAB model, the real-world
challenges faced during deployment and adoption of SAHELI,
and the end-to-end pipeline. Additionally, we showcase the
characteristics of beneficiaries who benefit the most from SA-
HELI.

Introduction
Mobile health (mHealth) programs, that leverage the
widespread use of cellphones, are a crucial resource
for bridging information inequities for underserved and
marginalized communities in the global south (Tshikomana
and Ramukumba 2022; Gupta et al. 2022), especially in ar-
eas such as public health and social services where access
to authoritative information is unevenly distributed. Many
non-governmental organizations (NGOs) periodically send
automated voice messages to improve health outcomes of
beneficiaries. However, in spite of high adoption, adher-
ence is a key challenge in public health information pro-
grams (ARMMAN 2019; Jakob et al. 2022; Eysenbach
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2005; Meyerowitz-Katz et al. 2020). NGOs often employ
live service calls made by health workers to boost engage-
ment via encouragement or through logistic changes re-
quested by beneficiaries. However, given the comparatively
large number of potential beneficiaries, it is important to
maximally utilize the limited availability of health workers,
and thus it is crucial to identify the best recipients for such
service calls.

Figure 1: A beneficiary receiving preventive health information

While AI models can help health workers in optimizing
their service calls, deploying these models in the context
of mHealth programs for underserved communities presents
unique challenges. First, available data is sparse and skewed
(because data is necessarily limited from small numbers of
service calls). Second, NGOs are constrained by a very lim-
ited compute budget. Third, responsible deployment of the
AI models is particularly important in such settings.

In this paper, we show how we address these research
challenges in our deployed AI model – a Restless Multi-
Armed Bandits (RMAB) model – together with our NGO
partner ARMMAN (ARMMAN 2008) to improve the qual-
ity of service of their mHealth program focusing on mater-
nal and child care in India 1. India suffers from high ma-
ternal and neonatal mortality rates (Meh et al. 2022; World
Health Organization (WHO) 2020), and ARMMAN (ARM-
MAN 2008) runs one of the largest mHealth programs in
this domain in India. Our system, SAHELI (System for Al-
locating Healthcare-resources Efficiently given Limited In-
terventions), is the result of deep partnership of an inter-

1This paper builds on and provides additional analysis over the
real-world results of Verma et al. (2023)



disciplinary team of researchers. SAHELI (meaning ‘female
friend’ in Hindi) is designed to assist, rather than substitute,
health workers in their normal workflow. The key contribu-
tions of deployed SAHELI are:
• SAHELI includes the first deployed application of

RMABs for public health, and it is continuously in use
by our partner NGO ARMMAN.

• A key novelty of the deployment is that it both predicts
RMAB model parameters and computes optimal poli-
cies; in contrast with most past research that has fo-
cused on computing optimal policies. To that end, we
provide an improved and robust machine learning predic-
tion framework by performing model selection and eval-
uation of real-world RMAB systems.

• We deployed SAHELI on cloud infrastructure with an em-
phasis on frugality throughout the end-to-end pipeline
given the resource constraints of the NGO partner.

• We present an impact analysis of SAHELI showcasing
the characteristics of beneficiries who benefit the most
from our system.

SAHELI has been developed as a platform, with the abil-
ity to be scaled to more NGOs in more domains. Our source
code and data dictionary are available on Github2. For de-
tails on the ethics and data use, please refer to the appendix.

Related Work
While several works in the healthcare domain have stud-
ied patient adherence for diseases like HIV (Tuldrà et al.
1999), cardiac problems (Corotto et al. 2013) and tuberculo-
sis (Killian et al. 2019; Pilote et al. 1996), these largely fo-
cus on building machine learning classifiers to predict future
adherence to prescribed medication. With such models, the
pool of beneficiaries flagged as ‘high-risk’ can itself be very
large. Furthermore, the one-shot predictions of these models
fail to capture the sequential decision making aspect of the
problem. Other approaches that consider sequential decision
making challenges, such as Pollack et al. (2002); Liao et al.
(2020) adopt reinforcement learning techniques to build per-
sonalized health monitors that can send timely notifications
or activity suggestions to users. However, these models as-
sume notifications can be sent at will, and as such, do not
address the challenge of limited service call resources.

Alternatively, RMABs have seen significant theoretical
investigation, motivated by resource allocation challenges,
such as in anti-poaching patrols (Qian et al. 2016), multi-
channel communication (Liu and Zhao 2010), sensor moni-
toring and machine maintenance tasks (Glazebrook, Ruiz-
Hernandex, and Kirkbride 2006). While they provide im-
portant contributions, none of these works have seen a real
world deployment, and most have not been field tested.

Key reasons for the lack of RMAB deployment are their
significant computational and data requirements. For exam-
ple, just the optimization problem of computing the optimal
allocation π, while assuming the transition parameters P are
available, is already known to be PSPACE-hard (Papadim-
itriou and Tsitsiklis 1999). Furthermore, in the real world,

2https://github.com/armman-projects/SAHELI

these transition parameters are not just unknown but also
hard to infer for real beneficiaries enrolling with ARMMAN
and other similar health programs, as they come with no his-
torical transition data. Despite such difficulties, our work is
the first to deploy RMABs in tackling a real-world maternal
healthcare task via frugal design choices discussed below.

Problem Introduction
ARMMAN is a non-governmental nonprofit organization
based in India, focused on improving maternal and child
health outcomes among underserved and underprivileged
communities (ARMMAN 2008). Their flagship program,
‘mMitra’, is a mHealth service that aims to leverage the ex-
tensive cellphone penetration in India to send out critical
preventive health information to expectant or new mothers
via automated voice messages. A large fraction (∼ 90%) of
mothers in the mMitra program are below the World Bank
international poverty line (World Bank 2020). Despite the
acute economic disadvantages faced by these mothers, such
automated voice messages prove to be a feasible mode of
information dissemination at scale, thanks to the wide ac-
cessibility of low-cost phones.

After enrollment into the mMitra mHealth program, ben-
eficiaries receive 1-2 minute voice messages with health
information according to the beneficiary’s gestational age
or age of the infant. Unfortunately, despite the proven ef-
fectiveness of this information program in improving ma-
ternal health outcomes, ARMMAN often sees dwindling
engagement rates among beneficiaries, including frequent
dropouts. Around 22% of beneficiaries drop out of the pro-
gram after just 3 months. To counter this issue, ARMMAN
leverages health workers that place live service calls (phone
calls) to a limited number of beneficiaries on a weekly basis
to encourage beneficiaries’ participation, address requests/
complaints, and attempt to prevent engagement drops. This
raises the key question of deciding which beneficiaries to
pick for live service calls in order to improve engagement
rates among the beneficiaries.

Restless Multi-Armed Bandits (RMAB)
The Restless Multi-Armed Bandits (RMABs) model was
first introduced by Whittle (1988) to address limited re-
source allocation problems, but has not received much at-
tention in terms of real-world deployments. An RMAB con-
sists of a set of N arms, where each arm is associated with
a two-action MDP (Puterman 2014). An MDP {S,A, r, P}
consists of a set of states S, a set of actions A, a reward
function r : S × A × S 7→ R, and a transition function P ,
where Pα

s,s′ is the probability of transitioning from state s to
s′ when action α is chosen. The reward function in our setup
is given as r(s, α, s′) = s′. An MDP policy π : S 7→ A
maps to the choice of action to take at each state. The long-
term discounted reward for a policy π, starting from state
s0 = s is defined as Rπ

γ (s) = E [
∑∞

t=0 γ
tr(st+1)|s0 = s]

where st+1 ∼ P
π(st)
st,st+1 and γ ∈ [0, 1) is the discount factor.

The total reward in the RMAB is defined as the sum of the
total rewards accrued by individual arms of the RMAB.



In the setup we consider, each arm of the RMAB mod-
els a beneficiary enrolled with ARMMAN, who can be in
one of two states S = {0, 1} (corresponding to ‘Not Engag-
ing (NE)’ and ‘Engaging (E)’ respectively). Engagement in
our setup was defined in consultation with the subject mat-
ter experts at ARMMAN: we define a beneficiary as engaged
when she listens to at least one call in a week for more than
30 seconds. The action space for each arm consists of two
actions, A = {0, 1}, where 1(0), typically called the active
(passive) action, refers to selecting (not selecting) the bene-
ficiary for the live service call. Beneficiaries may transition
from say their E state to NE state (or other transitions) from
one week to the next week based on their transition prob-
abilities defined on passive or active actions. The planner’s
goal is to select actions on arms (deliver live service calls) so
as to maximize the total reward, i.e. number of beneficiaries
in the engaged state, accrued by the RMAB. However, the
budget constraint demands that the planner can choose no
more than k arms (k ≪ N ) for the active action at any given
timestep, i.e., no more than k live service calls per week.

The dominant technique for solving RMABs uses the
Whittle Index heuristic (Whittle 1988), which is shown to
have asymptotic optimality under some conditions (Weber
and Weiss 1990), and to provide excellent performance in
practice (Qian et al. 2016). Whittle indexes are formulated
using the idea of passive subsidy, and informally rank arms
so as to choose the top k, based on how attractive it is for a
planner to activate each arm. For computing Whittle index,
we use binary search algorithm from Qian et al. (2016)

Previous Study: Our previous study conducted in April
2021 (Mate et al. 2022) is the first to present real-world ser-
vice quality improvement using RMABs in the context of
mMitra program. This study tested an RMAB-based policy
against two baselines of interest, and showed RMAB outper-
forming its competitors. The study spanned 7 weeks and in-
cluded 23, 003 real-world beneficiaries who were distributed
in three groups corresponding to the RMAB policy, Round
Robin (RR) and Current Standard of Care (CSOC). Whereas
RR corresponds to a non-AI heuristic for systematically call-
ing beneficiaries, CSOC did not call any individuals. The
results from this pilot study are shown in Table 1.

Improvements RMAB over
CSOC

RMAB
over RR

RR over
CSOC

% reduction in to-
tal beneficiary en-
gagement drops

32.0% 28.3% 5.2%

p-value 0.044 0.098 0.740

Table 1: RMABs demonstrate statistically significant superior
performance when compared against other non-AI approaches,
namely Current Standard of Care (CSOC) and Round Robin (RR),
as shown by Mate et al. (2022).

The pilot results demonstrated that the RMAB method
cuts ∼ 30% of the beneficiary engagement drops experi-
enced by the other groups. Furthermore, whereas RMAB

achieves statistically significant improvement against CSOC
(p < 0.05) and RR (p < 0.1), RR fails to achieve any sta-
tistically significant improvement over CSOC. This key re-
sult forms the basis of relying on RMAB-based strategy over
other non-AI strategies as a basis of SAHELI. In this paper,
we describe the journey from this initial study to the final
deployment. Whereas we use the same overall RMAB learn-
ing and optimization approach, we made multiple changes
to provide significant enhancements that reduce data anoma-
lies and improve computational performance of this RMAB-
based strategy. Additionally, our deployed cloud application
now automates the data exchange process with the NGO’s
systems while requiring minimal compute resources to be
feasibly handled by the NGO. We now describe the end-to-
end SAHELI system.

Deploying SAHELI

We now introduce SAHELI and its architecture. We begin by
discussing the different components, and follow that up with
the description of the AI pipeline. We then discuss the frugal
design choices – both in modeling and infrastructure – that
were required to finalize the deployment.

System Architecture
We first describe all the interactions within SAHELI’s
ecosystem (refer Figure 2). The health workers in the field
periodically register beneficiaries through door-to-door vis-
its or at the hospitals (step 1). The socio-demographic data
such as age, language, income range, as well as the infor-
mation on gestational age is then entered into the database
maintained by ARMMAN (step 3). Automated voice mes-
sages tailored to the beneficiaries’ gestational age are sent
with the help of a telecommunication provider (step 4). The
meta-data of the outcome such as duration of the call, fail-
ure reason etc, is also pushed to ARMMAN’s database . As
beneficiaries’ engagement with the voice messages dimin-
ishes over time, live service calls are made by ARMMAN
to encourage beneficiaries to engage with the program (step
10). However due to limited resources on the NGO’s side,
only a limited number of live service calls can be made each
week. The AI pipeline predicts which beneficiaries would
benefit most from receiving a service call in any given week.
This list of beneficiaries is then generated at the start of each
week and distributed across health workers in an automated
fashion as shown on Figure 2 in steps through 2-9.

Step 8 in Figure 2 shows the generation of the list of ben-
eficiaries that should be intervened in the given week using
the AI pipeline. This list is ingested in ARMMAN’s cloud
databases, which serve as the back-end of a client mobile
application (screenshot provided in Figure 2) used by the
health workers. This client application randomly distributes
the list of scheduled service calls among health workers
based on their weekly availability. An illustrative screenshot
(not real beneficiary) is also shown in Figure 2. The calls are
made through the week (step 10) with a maximum of 3 call
attempts to the same beneficiary. All the beneficiaries in the
generated list receive the aforesaid service calls. The model
is currently providing services to beneficiaries enrolling at



Figure 2: Pipeline of Deployed System. Beneficiary information on app UI is available only to the health worker in charge.

an average rate of 20K beneficiaries per month with a bud-
get of 1000 calls per week.

SAHELI streamlines the entire deployment workflow in a
singular pipeline, and automates its orchestration and exe-
cution, making this process computationally efficient, cost-
effective, and easy to debug. As more beneficiaries get en-
rolled periodically, the beneficiary cohort in the applica-
tion can now be updated automatically. In our AI pipeline
we focused on identifying the right set of beneficiaries to
call, and not on automating the contents of the service call.
This is a key design choice in SAHELI: we thus comple-
ment the human-to-human engagement between the health
worker and the beneficiary, and together they contribute to-
wards aiding a particular beneficiary and driving higher en-
gagement with the mHealth program. This model of work-
ing together with the health workers embodies ARMMAN’s
core ‘tech plus touch’ philosophy (ARMMAN 2008) and is
essential to our successful outcomes.

Pipeline Description
This section describes the modules in the AI pipeline for
both the offline model training and the online model exe-
cution. The offline model creation begins with the process-
ing of the training data (i.e. historic data from past mHealth
studies), clustering of processed data, and the RMAB mod-
eling per cluster. The transition probabilities and the Whittle
indexes are then learned per cluster. Additionally, a map-
ping from socio-demographic features of a beneficiary to
a cluster is also learned offline. This mapping is used to
treat a new beneficiary during model execution – transition
probabilities and Whittle index values for the new benefi-
ciary are given by the corresponding values of the benefi-
ciary’s mapped cluster. These individual modules are now
described. For data privacy reasons, the data pipeline only
uses anonymized data and no personally identifiable infor-
mation (PII) is made available to the AI models.

Data Processing: We train the model on a dataset ob-
tained from historic data collected by ARMMAN, consisting
of demographic features and listenership patterns. However,
during the pre-deployment trials, we observed some anoma-
lous engagement behaviors – the engagement behavior for
some beneficiaries was extremely spiky and unexpected.
Figures 3(a) and (b), show two such anomalous groups with

(a) (b)

(c) (d)

Figure 3: Figures (a) and (b) show anomalous engagement be-
havior while figures (c) and (d) are genuine behaviors. The y-axis
shows the proportion of cluster-population in engaging state.

a clear peak and dip contrasted with groups having genuine
engagement behavior. Upon investigation we found that this
spiky behavior resulted from unanticipated real-world events
like network outages.

We detect and exclude such anomalies from SAHELI’s
data training pipeline. We first group beneficiaries based on
their passive transition probabilities. For grouped beneficia-
ries, we then obtain a running mean of their engagement
over time where the mean is calculated over a window of 3
weeks. We filter out all groups with more than 20% change
in running mean engagement within a week. Figures 3(c)
and (d) show two groups that don’t exhibit anomalous be-
havior and are maintained in the data pipeline.

Additionally, further discussions with ARMMAN pointed
out long-term engagement issues in some beneficiaries, such
as the registration of a wrong or out-of-service phone num-
ber, or the beneficiary not being pregnant. Live service calls
in these cases are not productive. Thus, as a pre-processing
step, we do not consider beneficiaries who have not listened
to any automated voice calls in the past 6 weeks.

Clustering: We face a data scarcity and skew challenge
in our domain. Specifically, our training dataset comprises
beneficiaries from our own past studies where intervention
data is available for only a limited set of these beneficia-
ries. Thus, to define the parameters of the RMAB model,
we cluster beneficiaries as an effective way of addressing
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Figure 4: Figure (a) shows elbow plot with distortion for varying
number of clusters. Figures (b), (c), and (d) show the distribution of
predicted clusters using the Feature Only (FO), Feature and Warm-
up (FW), and Warm-up Only (WO) mapping functions.

data scarcity. We cluster the beneficiaries per their transition
behaviors for passive actions using k-means clustering. We
obtain transition probabilities for each of these clusters by
aggregating their transitions as a whole.

However, the optimal number of clusters is a design
choice not readily addressed by k-means. We experimented
with the number of clusters ranging from 1 to 100, and
looked at the distortion metric. Distortion is the sum of
squared distances of each point from its corresponding cen-
troid, where smaller distortion implies better clustering. We
plot the distortion values for multiple number of clusters and
find 20 to be the ideal choice using elbow-method. The re-
sults are shown in Figure 4a where the x-axis is the number
of clusters and the y-axis is the distortion value. This has the
added advantage of offering computational frugality.

Mapping Features to Clusters: When a new beneficiary
enrolls into the system, the system only knows about their
demographic data. We therefore need to learn a mapping
of a beneficiary’s socio-demographic features to clusters, to
enable inferring transition probabilities and Whittle indexes
for newly enrolled beneficiaries (step 6 in Figure 2). We ex-
perimented with different mapping functions to identify the
best one: Features Only (FO) mapping - beneficiaries’ socio-
demographic features only; Warm-up Only (WO) mapping -
transition probabilities computed from warm-up period (first
6 weeks post enrollment); and lastly Feature and Warm-up
(FW) mapping - using a combination of the above two.

We compute Mean Absolute Error between predicted and
ground truth passive transition probabilities as a perfor-
mance metric and found them as [0.40,0.37, 0.38] for FO,
FW, and WO strategies respectively. In addition to MAE,
we plot the distribution of beneficiaries predicted in differ-
ent clusters (refer Figures 4(b), (c) and (d)). Having a sparse
cluster distribution is undesirable since large clusters low-
ers the granularity of Whittle index planning. As an extreme
example, if all beneficiaries are mapped to a single cluster,
they would all have the same transition probability and thus
the same Whittle indexes. Since the cluster size is now much
larger than the number of arms to be pulled, the beneficiaries
within that cluster would be chosen randomly for receiving

service calls, which would degrade the performance.
Thus, to ensure equitable cluster distribution, we com-

puted Entropy and Gini index values for the predicted distri-
bution of number of beneficiaries per cluster. Entropy values
came out to be [2.81, 2.56, 2.04] for FO, FW, and WO re-
spectively, and Gini indexes were [0.29, 0.48, 0.57]. Given
the error similarities for the three strategies, and higher en-
tropy / lower Gini index implies more equitable clusters, we
chose FO as our strategy.

There are additional improvements for efficiency in SA-
HELI. We refer the reader to Verma et al. (2023) for further
details.

Application Use and Payoff
We now discuss the impact of SAHELI on both the benefi-
ciaries as well as the AI community in more detail. SAHELI
is deployed and in continuous use at ARMMAN. It has al-
ready reached 100K beneficiaries, and is on track to reach
one million beneficiaries by the end of 2023. We provide a
summary of Impact from SAHELI in Table 2.

Engagement Results
In order to evaluate the impact of live service calls through
SAHELI, we study the engagement behavior of a cohort of
5000 beneficiaries for 12 weeks, registered between Febru-
ary 2022 to April 2022. Additionally, we create a holdout set
of beneficiaries registered in the same time period but are not
given any live service calls (we obtained ethical approvals
before our studies; see section Responsible AI practices for
further discussion). We make sure that both the SAHELI and
holdout groups have equal number of beneficiaries, equal
number engaging beneficiaries at the start of experiment,
and similar socio-demographic features.

Figure 5(a) shows how many engagements did not occur
in the holdout group that occurred in the SAHELI group, ag-
gregated cumulatively across months. It demonstrates that
the SAHELI group received significant benefit with an addi-
tional 328 engagements over the holdout group cumulatively
at the end of three months. We also measured the difference
in terms of time spent listening to mMitra voice calls. More
time spent implies more content exposure, as well as better
adherence with the mHealth program. In particular, by the
end of month 3, the SAHELI group had listened to 59, 336
seconds (∼ 12 seconds per beneficiary, but please see anal-
ysis below) more of content than the holdout group (Fig-
ure 5(b)). Similar to Mate et al. (2022), we define the rel-
ative improvement in listenership metric over the holdout
group as

% improvement =
∆ listenership (SAHELI, holdout)

listenership in holdout
(1)

As the holdout group has 1075 drops in engagements and
127, 711 seconds drop in duration of calls listened to over
three months, SAHELI prevented drop in engagements by
30.5% with an additional content exposure of 46.4% in
comparison to the holdout group. This analysis demonstrates
SAHELI’s success in achieving our core objectives of im-
proving information dissemination.



(a) (b)

Figure 5: (a) Prevention in drop in engagement (cumulative)
(b) Increased time spent listening to calls (cumulative)

Figure 6: Increased time spent listening to calls (over three
months). The metric is shown for beneficiaries belonging to very
low, low, medium and high quartiles of listenership before the start
of study.

Who is Benefitted from SAHELI?
In order to determine the characteristics of beneficiary who
gain the most from SAHELI, we divide the 5000 beneficia-
ries in our cohort based on two criterion

1. Listenership prior to the start of study
2. Gestational age at the time of enrollment

First, we consider the listenership of beneficiaries one
month prior to start of live service calls delivered through
SAHELI. In this time period, we calculate the mean dura-
tion of calls listened to every week. Based on this metric, we
divide the 5000 strong cohort into quartiles of listenership -
very low, low, medium and high. These quartiles thus char-
acterize the initial behaviour of beneficiaries. Next, we re-
peat the same steps for the holdout population which doesn’t
receive any service calls. Finally, we plot how many more
seconds of mMitra content is listened by every beneficiary
in the quartiles in SAHELI group as compared to the same
quartiles in the holdout group (Figure 6).

While the population average increase in content listen-
ership is ∼ 12 seconds, beneficiaries with different listen-
ership profiles before being exposed to SAHELI show very
distinctive behaviours. Specifically, the very low quartile of
beneficiaries gain the most in SAHELI, with 39 seconds ad-
ditional content listenership over the holdout group. In ab-
solute terms, the very low quartile in holdout group has per
beneficiary 30 seconds of increase in duration of calls lis-
tened to over three months while the SAHELI group has per

Figure 7: Increased time spent listening to calls (over three
months). The metric is shown for pregnant mothers in their 1st, 2nd
and 3rd trimesters of pregnancy and for beneficiaries who have al-
ready delivered.

Impact from SAHELI
Beneficiairies served 100K
In continous use since April 2022
Relative engagement drops prevented over hold-
out group∗

30.5%

Additional average per beneficiary content ex-
posure over holdout group∗

12 seconds

Relative increase in content exposure over hold-
out group∗

46.4%

For bottom 25 percentile of listeners, Additional
average per beneficiary content exposure over
holdout group∗

39 seconds

For bottom 25 percentile of listeners, relative in-
crease in content exposure over holdout group∗

130%

Table 2: A summary of impact from SAHELI. ∗ refers to results
from a sample of 5000 beneficiaires.

beneficiary 69 seconds of increase in duration of calls lis-
tened in the same time period for the same quartile. Thus,
using Equation 1, we note that in relative terms, the very low
quartile has 130% additional content exposure in compari-
son to the holdout group.

For the second criterion, we consider the gestational age
of beneficiaries and their delivery status at the time of en-
rollment. For pregnant women, we use the gestational age at
the time of enrollment to calculate their pregnancy trimester.
Similar to Figure 6, in Figure , we plot for every gestational
age bucket, how many additional seconds of mMmitra calls
are listened by every beneficiaries in the SAHELI group
as compared to the holdout group. Specifically, we observe
that beneficiaries close to the delivery date (higher trimester)
have greater benefit from being in the SAHELI group.

Impact of Live Service Calls
We performed a qualitative study to understand the experi-
ences and challenges faced by healthcare workers upon the
introduction of SAHELI. We conducted a total of 24 in-
terviews, 2 focus group discussions, and approximately 90



hours of observation over a period of six weeks. Conclu-
sions were drawn by analyzing interview transcripts (audio
recorded with consent). We found that with SAHELI, health
workers were able to have more interactive conversations
with their beneficiaries as they were aware that they had to
provide support to people who were at high risk of drop off
otherwise. In one of the interviews, one of the health work-
ers mentioned that:

Women don’t remember that they registered by the time
they go home. A lot is happening during their visit. When
they get a call, then they remember. We are able to do this
better now since we know we are targeting those who need
this call the most.

We also investigated the reasons for why live service
calls helped improve engagement with ARMMAN’s mMi-
tra mHealth program from the perspective of the beneficiary.
Specifically, we conducted a follow-up study with a sample
of beneficiaries who were given live service calls one year
ago. We could successfully reach out to 306 beneficiaries,
out of which 134 recalled the details of the service call from
a year ago. Table 3 shows the responses to our follow-up
study by these 134 beneficiaries. Particularly, 50.75% bene-
ficiaries engaged more with mMitra calls after getting more
information about the program. The service calls also helped
improve listenership by making logistical updates such as
updating delivery date (9.7%), changing time slot of receiv-
ing the call (8.21%) or updating the phone number (2.99%).

Did the call help you to listen to the mMitra
calls more regularly?

# of Benefi-
ciaries

% of Benefi-
ciaries

Yes, after getting more information about mMi-
tra, I am listening to the calls more regularly

68 (in 134) 50.75%

Not really 30 22.39%
Yes, after updating my delivery date, I was able
to get the right information

13 9.7%

Yes, after changing time slot, I am able to listen
to the calls more regularly

11 8.21%

Have not asked my wife 4 2.99%
Yes, after changing the number, I am able to lis-
ten to the calls more regularly

4 2.99%

Any other 4 2.99%

Table 3: Follow-up study responses

Lessons Learned
Over the course of one year of our experiments moving from
Pilot study to Deployment, we learned several lessons along
the way. Most importantly, we learned that even a successful
pilot study can’t be translated as-is into a full-scale deploy-
ment, and that several considerations are critical for wide-
scale adoption of AI tools and scaling up of impact.

Selecting the right problem: There are multitude of
problems that require to be solved to address the needs of the
underserved communities. In our interactions with ARM-
MAN, we realized that we could create the most impact with
our techniques by improving the selection of the right ben-
eficiaries for manual intervention, as opposed to automat-
ing the communication with the beneficiary. Our choice of
problem is consistent with the ‘tech plus touch‘ philosophy
of ARMMAN (2008), and ensures that we complement the

human expertise of the health worker. This way, each chosen
beneficiary continued to have a one-on-one interaction with
a health worker, while simultaneously improving the overall
engagement with the mHealth program.

Immersion into the real-world problem: We learned
that immersing in the working of a NGO and public health
infrastructure is critical in understanding the context of the
problem. The authors went on multiple field visits to under-
stand the stakeholders involved in the mMitra’s workflow.
The health workers interact with the beneficiaries across
multiple mHealth programs, and thus can speak to the needs
and behaviors of the beneficiaries. For instance, upon inter-
acting with these health workers, we understood how tele-
com outages lead to more anomalous and incomplete data
than we had anticipated. These field visits forced us to re-
evaluate our assumptions, and led to better data processing
and modeling choices, as discussed in the earlier sections.
For instance, after these discussions, we incorporated a new
anomaly detection mechanism in our data pipeline.

End-to-end integration testing: We also ran into sev-
eral issues in our end-to-end integrated pipeline. On one oc-
casion, we saw poor results because the data schema had
evolved in the data storage pipeline at ARMMAN. Testing
of our application required our NGO partner to be equally
involved in the validation of SAHELI’s outputs – as domain
experts, they are better equipped to identify counter-intuitive
behaviors. Our experiences uncovering issues in the end-to-
end pipeline led to improved communication practices, bet-
ter documentation and tighter test goals. Social good appli-
cations like SAHELI have real-world consequences for ben-
eficiaries in underserved communities, and it is critical that
there be a real partnership for testing and integration.

Conclusion
In this paper, we presented SAHELI, the first ever deploy-
ment of RMABs in the public health domain for allocation
of limited resources. SAHELI is built on an improved and
robust framework that both predicts RMAB parameters and
computes optimal policies for it, in contrast with most past
research that has only focused on computing optimal poli-
cies. It has been built with careful design choices inspired
by close interactions with all stakeholders. It incorporates
numerous lessons learned by embedding ourselves in the
real-world domain. SAHELI has been deployed on cloud in-
frastructure with an emphasis on frugality, and has reached
out to 100K beneficiaries so far and aims to reach 1 mil-
lion by 2023. Furthermore, we also discuss the importance
of responsible AI practices in deploying AI systems at scale,
especially in the social domain. This work serves as an im-
portant case study for AI researchers and NGO’s alike to
take ML models from the lab and deploy them in the field.
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Appendix
Ethics
We recognize the responsibility associated with deploying
real-world AI systems that impacts underserved commu-
nities. In our approach, we have iteratively designed, de-
veloped and deployed the system in constant coordination
with an interdisciplinary team of ARMMAN’s field staff,
social work researchers, public health researchers and eth-
ical experts. Particularly, all experiments, field tests and the
deployment were performed after obtaining approval from
ethics review board at both ARMMAN and Google.

Consent and Data Usage
The consent for participating in the mMitra program is re-
ceived from beneficiaries in both written form at the time of
registration and digitally via a missed call. Additionally, all
the data collected through the program is owned by the NGO
and only the NGO is allowed to share data. This dataset will
never be used by Google for any commercial purposes. SA-
HELI’s data pipeline only uses anonymized data and no per-
sonally identifiable information (PII) is made available to
the AI models. The data exchange and use was thus regu-
lated through clearly defined exchange protocols including
anonymization, read-access only to researchers, restricted
use of the data for research purposes only, and approval by
ARMMAN’s ethics review committee.

Universal Accessibility of Health Information
To allay further concerns: SAHELI focuses on improving
quality of service calls and does not alter, for any bene-
ficiary, the accessibility of health information. All partici-
pants will receive the same weekly health information by
automated message regardless of whether they are sched-
uled to receive service calls or not. The service call program
does not withhold any information from the participants nor
conduct any experimentation on the health information. The
health information is always available to all participants,
and participants can always request service calls via a free
missed call service.


