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Abstract

Generating synthetic election data using deep generative
models, such as generative adversarial networks (GAN) and
variational autoencoders (VAE), is a previously unexplored
field of deep learning. Voting or preference aggregation-
related algorithms are normally tested on little available real
election data and more synthetic election data. To generate
this synthetic data, statistical models for ranking such as ran-
dom utility models or distance-based models are generally
used. Some works focus on simpler assumptions based on
the uniform distribution, such as impartial culture or single-
peaked preferences. In this work, we propose the usage of
GANs and VAEs, which are powerful and proven generative
models. We train these generative models using real election
data with two goals: generate realistic data that it closely re-
semble the training data; and generate this data such that it
does not overfit, simply memorizing the training data, thus
diversifying the overall election data. We present evaluation
measures and objectives for generative models that are specif-
ically suited for elections. Our work indicates that GAN and
VAE manage to generate reasonably high quality data without
overfitting on the training data.

1 Introduction
Voting is the most popular method for preference aggrega-
tion to make group decisions, thus making it a very impor-
tant topic of social choice research. Computational social
choice has also been an important topic to compute the like-
lihood of scenarios like manipulation, bribery or paradox-
ical outcomes of voting rules. Most of the empirical anal-
ysis on such tasks are often done on synthetic data due to
lack of available real preference datasets. Also, a few recent
works have looked into designing new voting rules by train-
ing a classifier on synthetic data or predicting the will of
the people directly to determine the voting rule. All of these
tasks mostly make use of synthetic preference profiles that
are sampled using simple distributions, e.g., uniform dis-
tribution over rankings (also called impartial culture), sta-
tistical models for rankings such as random utility models
(e.g., Plackett-Luce), or distance-based models (e.g., Mal-
lows). Some real election data sets exist, but in many cases
they are limited. For example, political elections usually oc-
cur in long gaps and many of them simply use plurality vot-
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ing which only considers the top choice of voters. This con-
tributes to the rarity of election data being readily available
in bulk, especially for more deep and complex models. Some
resources can be found in data libraries like PrefLib or Fair-
vote, but even those are limited to an extent. For example,
PrefLib has only 315 total election datasets that have strict
full order ranking information.

This led us to the task of generating synthetic election
data that is similar to existing ones. Deep generative models
such as generative adversarial networks (GAN) and varia-
tional auto-encoders (VAE) have been used successfully for
this purpose in other domains. The most successful exam-
ples are in Computer Vision of generating highly realistic
images of a wide variety of subjects, ranging from human
faces to inanimate objects. In this paper, we want to explore
if we can use similar techniques to generate synthetic elec-
tion data that can contribute to the limited realm of election
data. We ask two main research questions in this paper, the
second stemming from the first:

1. How can we use modern deep learning techniques to
generate synthetic but realistic election data similar to some
existing dataset?

2. How to effectively evaluate goodness of generated elec-
tion datasets in a quantitative manner?

The question of evaluation requires us to expand on what
we want from synthetically generated data. We want the gen-
erated data to closely resemble the training data, but we also
do not want simple sampling or boosting-based techniques
that simply make copies of existing data. That is, we want to
minimize overfitting or memorization of the training data.

Our contributions. Our primary contribution in this pa-
per is twofold. First, we use deep generative models, in par-
ticular generative adversarial networks (GAN) and varia-
tional autoencoders (VAE), to generate new data similar to
existing preference profiles. Second, we adapt existing eval-
uation measures in the generative model literature to mea-
sure the quality of our generated election data.

In this paper, we focus on preference profiles with strict
(no ties) and complete rankings (no partial rankings). We
conduct extensive experiments by training models on real
preference profiles that were created using the Netflix pref-
erence dataset



Related Work
Common methods of generating sample preference profiles
is by assuming some sort of distribution. The most com-
mon, yet unrealistic, is to sample individual voters’ pref-
erences uniformly from the set of all possible votes and
then combine them in a preference profile. Other meth-
ods assume some restrictions on the preferences, such as
single-peaked preferences (Moulin 1980; Brams, Jones, and
Kilgour 2002). More complex methods of generating pref-
erence profiles include using a statistical model for rank-
ings such as random utility models (Azari Soufiani, Parkes,
and Xia 2012) or distance-based models. Popular exam-
ples of random utility models include the Plackett-Luce
model (Plackett 1975; Luce 1959) and Thurstone’s case V
model (Thurstone 1927). Likewise, Mallows model (Mal-
lows 1957) is a common distance-based model. These statis-
tical models are also used in learning preferences of voters
and thus can be used to generate synthetic preference pro-
files. Beyond that, spatial models have also been used where
voters and alternatives are considered as belonging to a la-
tent space, with the distance between them indicating pref-
erence (e.g., (Merrill 1985)).

As mentioned in the introduction, there are not many large
election datasets with rich properties. For example, datasets
are available for US Presidential and Senate elections (Data
2020a,b), but being single-winner elections, it is hard to
learn too much from the information. PrefLib (Mattei and
Walsh 2013) has a collection of different types of election
data. In this paper, we focus on strict and complete rank-
ings. We notice that for the strict and complete rankings in
PrefLib, most of them are generated from user preferences
in the Netflix Prize dataset (Bennett, Lanning et al. 2007).
We take motivation from that and create our realistic prefer-
ence profiles by sampling users’ strict rankings over movies
as expressed in the Netflix Prize dataset.

While generative models have always existed, examples
including aforementioned Plackett-Luce and Mallows mod-
els to more general mixture of Gaussian models, it is only
with the advancement of deep learning models that genera-
tive models have started to become adept at generating very
realistic samples in different domains (see (Harshvardhan
et al. 2020) for a recent survey). Early methods in simulat-
ing larger datasets based on a small real dataset include sam-
pling and boosting, some making use of nearest neighbor-
based sampling (Chawla et al. 2002). Kingma and Welling
(2013) introduced Variational Autoencoders (VAE), which
makes the assumption that samples belong to some underly-
ing latent distribution. By training an encoder and a decoder
to learn the latent distribution, VAEs can further be used to
sample from the latent distribution, acting as a generative
model. The use of deep neural networks for both the encoder
and decoder causes the VAE to be a rich generative model,
due to being able to learn very good latent models. Beyond
the goal of learning latent models, Generative Adversarial
Networks (GAN) (Goodfellow et al. 2020) were developed
with the goal of being a good generative model. GANs work
by using a pair of deep learning models together, a genera-
tive model whose goal is to generate new data, and an ad-
versarial model, whose goal is to differentiate between real

and generated data. By training both models together, GANs
are able to generate very realistic data, as particularly seen
in the field of computer vision by generating photo-realistic
images. Different variations of GANs have been created,
both from functional and architectural perspective. Condi-
tional GANs make use of conditions to specifically generate
different types of data. On the other hand architectures like
DCGAN (Radford, Metz, and Chintala 2015) make use of
rich models like convolutional neural networks to improve
the generative performance of GANs.

We are not aware of any work that tries to quantitatively
evaluate the quality of generated election data. So we in-
stead look into work that propose evaluation methods that
can measure different aspects generative models. Many of
these measures were designed to evaluate GANs with com-
puter vision tasks in mind, trying to find image similarity
etc. but most can be generalized to evaluate any generative
model. There are many proposed measures such as Incep-
tion score (Salimans et al. 2016), precision and recall (Lu-
cic et al. 2018) etc. but the most commonly used similarity
meausre is Frećhet Inception Distance (FID) (Heusel et al.
2017). The main idea behind FID is to learn a latent rep-
resentation for each image and assume that the latent dis-
tributions are sampled from a multivariate Gaussian dis-
tribution and fiind the distances between the distributions.
This idea can be generalized to compute Frechet distance
from any latent distribution that can be learned. Because of
the dependency on domain information for most of these
measures, new measures depending on classifier accuracy
trained and tested on generated data was proposed: GAN-
train and GAN-test (Shmelkov, Schmid, and Alahari 2018).
Beyond generating realistic samples, another concern for
generative models is overfitting, in whether the model is
overfitting on training set, even memorizing some training
data. The simplest method of finding if memorization has
occured is by computing the nearest neighbor of generated
samples in the training set and seeing if samples very close
to training samples have been computed (Bai et al. 2021).
See (Borji 2019, 2022) for a comprehensive study of evalu-
ation measures.

2 Preliminaries
Elections and preference profiles
Assume we have n voters and a set of m alternatives, A. Let
every voter have a strict ordering (ranking) over the full set
of A. Let L(A) be the set of all rankings. Thus, every voter
will have a ranking in L(A). We call the set of n rankings a
preference profile. For m alternatives, there are m! possible
rankings. Thus, we can represent a preference profile with an
m!-length vector x, where element xℓ indicates how many
people have the ℓ-th ranking as their preference. We can also
consider the normalized version of x as a preference profile
as well, where the sum of elements is 1. Thus a preference
profile, in our case, can be represented by any x ∈ Rm!

Netflix dataset: As the training set for our generative
models, we use real preference data from Netflix users to
create three-alternative and four-alternative preference pro-
file. This is similar to how majority of the strict order pref-



erence profiles in PrefLib (Mattei and Walsh 2013) was cre-
ated as well. For m = 3 or 4, we sample m movies at ran-
dom, and find all users who have strict rankings for all m
movies. That gives us a single preference profile. For both
m = 3 and 4, in this way, we can sample a large number of
preference profiles. However, we understand that in realistic
scenarios we will not have countless amount of data. So, we
limit ourselves to 1000 preference profiles for training and
1000 preference profiles for validation.

Generative models
The most common and simplest method of data generation
is up-sampling, where random samples in the data are cho-
sen as the “generated” data and increase the data size. The
drawback to this method, though, is the resulting duplicate
samples in the data. For data-driven models, the repeated
samples can ruin the training of the model by either forcing
a lack of convergence or causing the model to learn these
samples more heavily than the others, leading to reduced
generalization. A good generative model should ideally be
free from this issue. In this subsection, we discuss models
that we explore in this paper.

Synthetic Minority Over-sampling Technique
The Synthetic Minority Over-sampling Technique
(SMOTE) (Chawla et al. 2002) introduced the notion
of k-nearest neighbor(kNN) based up-sampling for minority
data to generate new balanced dataset. But the main idea
can be used to without consideration of data class as a
generative model by itself. The idea of SMOTE is that
based on the k-nearest neighbor samples of each sample
point, N neighboring points are randomly selected for
difference multiplication by a threshold in the range of
[0,1] to synthesize the data. The core of this algorithm is
that by using neighboring points on the feature space, the
samples chosen to extend the data maintain the distribution
of the previous data set, so the newly generated data set
reliably provides a better sample of the original data set.
This eliminates some of the issues found in the traditional
sampling method, as models that train on the generated data
are learning from the same distribution as the training data.

Variational autoencoder With the introduction of deep
networks to tackle big data and computation problems, gen-
erative networks also developed to incorporate these pow-
erful models. A prime example of this is the Variational au-
toencoder (Kingma and Welling 2013), which involves train-
ing a model that uses an encoder model to compress the fea-
tures of input data into a latent space, then learns to decode
that latent space back into an equivalent representation in
the original feature space with a decoder model. After the
overall model is trained in this fashion, synthetic data can be
generated by passing noise into the decoder. The objective
function of VAE is as below:

Eh∼E(h|x) logD(x|h)−KL(E(h|x)∥Q(h))

The former part uses E(h|x) to infer and maximize the
likelihood logD(x|h) of the latent message h. In other
words, it lowers the reconstructed error between the input
and the the synthesized data. The latter part, on the other

hand, restricts the estimated h to not be too different from
the prior latent message so that it can meet the assumption
of the VAE and achieve a better reconstruction result.

Generative adversarial network The objective function
of the VAE tunes the model to solely make the reconstructed
error as small as possible, which limits the creativity of the
model and thus the uniqueness of the generated data. To
combat this hindrance, in 2014, Goodfellow et al. proposed
the generative adversarial network (GAN) (Goodfellow et al.
2020), which is designed specifically to learn to generate re-
alistic data based on its distribution. Most current generation
tasks are based on this GAN model. The concept of a GAN is
that it contains a generator and a discriminator. The discrim-
inator learns to distinguish real data from fake data, while
the generator learns to fool the discriminator with its output.
Through this method, ideally, the generator eventually pro-
duces realistic enough synthetic data that the discriminator
believes the data is real. This competition process is what
allows the GAN to learn the distribution of the data, rather
than simply a reconstruction of the data. The objective func-
tion of GAN is as below:

min
G

max
D

(
Ex∼pdata(x)[logD(x)]

+ Ez∼pz(z)[log(1−D ◦G(z))]
)

The generator G samples the noise z from a gaussian dis-
tribution and transforms it from the latent space into the fea-
ture space as a new sample G(z). Then, G(z) and the train-
ing data x are used as input for the discriminator D to distin-
guish real from fake data, which then adjusts the parameters
of both networks.

3 Election Data Generation Using
Generative Models

Althought GANs have been used in many fields, usually
with outstanding results, there are few applications of GANs
with regards to election data. Compared with other types
of data such as images, time series, and text, there exists
a unique pattern in election data. Many elections use just
the top ranked alternative provided by voting agents to de-
termine a winner. But in most voting rules, a full ranking
is used, i.e., every voter provides a full ranking over all of
the alternatives. In this paper, we propose a GAN to deal
with voting profiles or preference profiles consisting of full
rankings and no ties. First, we use the number of voters who
rankings of the alternatives as features rather than the num-
ber of votes. These rankings are transformed into images to
be fed into the network. From here, the GAN learns the dis-
tribution of the election data and the relationships within the
rankings, and finally generates realistic synthetic samples.

The election data is in form as X = {x1,x2, ...,xN} ∈
RN×m! representing there are N elections, with the i-th ob-
servation, xi ∈ Rm! corresponding to m alternatives and the
feature size is m!, the total number of rankings over m al-
ternatives. The number of features is different for different
number of alternatives, we discuss the preprocessing process
to bring them to the same dimension below.



Featurization of election data
We explain the featurization with examples. If there are three
alternatives A,B and C, then all possible rankings would be
A > B > C,A > C > B,B > A > C,B > C > A,C >
A > B,C > B > A. The preference profile contains the
count of voters who has each preference as their ranking,
almost like a histogram of the rankings. However, the fea-
ture size is in the factorials of the number of alternatives.
For small number of alternatives, the feature size would be
few. Besides, every ranking is represented by means of one
value, but a single value does not contain enough informa-
tion. Since CNN is good at capturing the spatial pattern con-
sisting of many features, we do feature refinement by re-
peating each ranking, i.e. feature, and reshaping it into an
image so that there would be enough features for CNN to
learn. This also makes the number of features equal for any
number of alternatives. The transformed data is displayed
in Figure 1, and we can see that after the refinement, each
feature, i.e. ranking, consisted of many pixels and data with
different numbers of alternatives in the same dimensions.

Figure 1: The left image is transformed from election data
with 3 alternatives, and the right is from 4 alternatives. In left
image, there are 6 different regions representing 6 different
rankings, and the right one has 24 regions by the same logic.

For our experiments, we label the data with same amounts
of alternatives as one class. This is necessary in particular in
our GAN model learning because we use the class as condi-
tions and learn conditional GANs (CGAN) (Mirza and Osin-
dero 2014) in order to use the common knowledge within the
election data but not to confuse the training process.

Generative model architecture
GAN After the election data are converted to images, we
need to build a model that can capture all available infor-
mation from the images and correctly learn from it. When
building the images, lots of data is repeated to achieve cor-
rect sizes, making the image pattern generally much simpler
than typical image data.

We choose the convolutional neural network (CNN) as the
architecture of the GAN, which is good at capturing the spa-

tial relation within the data. To ensure the model extracts
only the necessary information - the difference in rankings -
from the data, instead of utilizing a strong spatial calculation
model as usually required for images, we adopt a conditional
Deep Convolution GAN (DCGAN), in which the underlying
generator and discriminator are both CNNs. The architecture
of our version of this model is shown in Figure 2. In addi-
tion, to ensure that the sum of all features in a single sample
add to 1 to match general normalized ranking data structure,
we also add a penalty to restrict the sums of features for each
sample in the synthetic data to as close to 1 as possible.

Specifically, the generator network is composed of 1 fully
connecting layer (FCL) and 3 convolution layers. Firstly, the
gaussian noise and condition, which indicate the number of
the alternatives, would be concatenated, and projecting them
into high dimension space by inputting them into the FCL,
which has 1536 neurons. Then, calculated by a series of con-
volution computation, and after each convolution computa-
tion, the result would also pass the batch normalization and
a ReLU activation. The first convolution layers has 256 fil-
ters, a kernel sizes of 3× 3, strides 1× 2, and valid padding,
the second one has 128 filters, a kernel sizes of 3×3, strides
3 × 3, and equal padding, and the third one has 1 filters, a
kernel sizes of 3× 3, strides 2× 2, and equal padding. After
the computation of the generator, the noise would be con-
verted to an array with the same dimension as the training
data whose shape is 24× 30× 1 (height, width, channel), as
known as the generated data. Then, the generated data and
training data would be input into discriminator which also
has 1 FCL and 3 convolution layers. The FCL has 3072 neu-
rons, and the first convolution layer has 256 filters, a kernel
sizes of 4 × 5, strides 2 × 2, and equal padding, the second
one has 256 filters, a kernel sizes of 4 × 5, strides 2 × 2,
and equal padding, and the third one has 256 filters, a kernel
sizes of 4 × 5, strides 2 × 2, and equal padding. Firstly, the
data would be concatenated with its condition, and concate-
nated data would be calculated by a series of convolution
calculation, and each convolution calculation comes by a
ReLU activation. Then, the convoluted result would be pro-
jected into 1 by the FCL for a better comparison dimension
of the real data and generated data. We use wasserstein dis-
tance (Arjovsky, Chintala, and Bottou 2017) to calculate the
difference of the real data and generated data for a better
stable training process.

VAE As for VAE generative model, the architecture of
encoder and decoder is almost the same as the discrimina-
tor and generator of the GAN, which is discussed in detail
above. The difference is that in VAE, we don’t use condi-
tion, and we train different VAE for the data with different
number of alternatives. Besides, mean square error is used
to calculate the difference of the real and generated data.

4 Evaluation methods
Two main issues loom over data generation tasks: over-
fitting and quality. As mentioned in the previous section,
over-fitting refers to when a model learns its training data
too closely, to the point where its output is essentially a copy
of the data. The quality of output depends on how much the



A>B>C A>C>B B>A>C B>C>A C>A>B C>B>A

1

2

3 … … … … … …

…

… … … … … …

N

Discriminator (CNN network)

Generator (CNN network)

Generated Data

A>B>C

A>C>B

B>A>C

B>C>A

C>A>B

C>B>A

Noise

Discriminated 

result

Training Data

A>B>C

A>C>B

B>A>C

B>C>A

C>A>B

C>B>A

Training Data

A>B>C

A>C>B

B>A>C

B>C>A

C>A>B

C>B>A

Training Data

Repeat the Feature

and

Transform

Figure 2: The architecture of our GAN.

AE

Training data

Synthesized data

Validation data

AE Trained well

(no under/over fitting) 

Test

Set parameter and 

architecture

Train

No

Yes

Trained AE

𝐑𝐄𝐯 𝐑𝐄𝒔

KS-test

Goodness of

Synthesized data

Figure 3: The Autoencoder evaluation procedure.

model learns the distribution of the training data instead of
learning to emulate it as a whole. In this section, we pro-
pose some methods to tackle each of these issues: Similarity
evaluation and Overfitting evaluation.

Similarity evaluation
To our knowledge, a similarity evaluation metric for syn-
thetic election data, that compares the data to training data
does not exist. For this purpose, we appropriate a couple of
popular evaluation measure in generative models, particu-
larly in GAN literature and propose a new one. The new
notion is autoencoder (AE) reconstruction error, which is
domain-agnostic, thus can be used to evaluate any genera-
tive models. We also use the popularly used GAN-train and
GAN-test evaluation measures. Finally, we adapt the popu-
lar Frechet Inception distance measure used for images for
election data using Plackett-Luce models. We discuss each
in detail below.

Autoencoder(AE) reconstruction error Although a
GAN should ideally generate samples that are purely
synthetic and not mimicking real data, the generated
synthetic data should still be realistic enough to belong in
the same distribution as its corresponding training data.
To measure this relationship, we propose the Autoencoder
(AE) evaluation method. An autoencoder model learns to
reconstruct data by training on a data set with the objective
output being the same training set. Autoencoders can be
used in anomaly detection, which involves training the
model using normal data so that when it is fed abnormal
data, it can detect anomalies in the data through the effects
on the reconstructed version of the data (Zong et al. 2018).
The proposed AE evaluation method is inspired by the
latter application in that it involves training an autoencoder
on ”normal” election data and testing the same model on
”abnormal” election data. If we just feed generated data to a



trained autoencoder to see if it is considered abnormal data
from the reconstruction error.

An autoencoder consists of two inner models: an encoder
and a decoder. The encoder takes the training data set of
the entire model as input, passes the data through convolu-
tion layers, and outputs a latent representation of the data.
The dimensions of this latent space are dependent on the di-
mensions of the convolution layers used in the model. The
decoder takes this latent representation as input, passes it
through deconvolution layers, then reconstructs it back to
the training labels.

The AE model used to evaluate our GAN uses an encoder
with one convolution layer and a decoder with one deconvo-
lution layer along with the output convolution layer. The in-
put of the encoder is the input of the model, which is a set of
images that represents election data. The convolution layer
of the encoder has 16 filters, a kernel size of 2 × 2, a stride
of 3, ReLU activation, and equal padding. Since, the decon-
volution layer of the decoder has to result in the same size as
the input, it uses the same parameters as the previous layer
in the encoder. In other words, this layer also has 16 filters,
a 2× 2 kernel size, a stride of 3, ReLU activation, and equal
padding. Lastly, the output convolution layer of the decoder
constructs the data back to an image the same size as the in-
put, so it has a single filter, a kernel size of 2× 2, a stride of
1, sigmoid activation to ensure the output values are between
0 and 1, and equal padding. The overall model is trained us-
ing the MSE loss function and the Adam optimizer (Kingma
and Ba 2014). The process of the AE evaluation method is
depicted in Figure 3. The results of this method, along with
other evaluation methods are discussed in the Experimental
Results section of the paper.

GAN-train and GAN-test (Shmelkov, Schmid, and Ala-
hari 2018) Shmelkov, Schmid, and Alahari (2018) first pro-
posed GAN-train and GAN-test as evaluation measures that
in the context of images approximate quality of the image
and diversity of the generative model. GAN-train is the ac-
curacy when a classifier is trained on the generative model’s
training set and then tested on generated data. On the other
hand, GAN-test is the accuracy when a classifier is trained
on the generated data and then tested on testing set. Note that
while the naming indicates that this was designed to work
with GANs, there is nothing in the definition that prevents
it from being used for other generative models as well. For
the voting scenario, our concern is what to use as a classi-
fier. For images, most images are associated with a label and
that is what they choose. For the voting scenario, we choose
the classification task as the task of predicting a voting rule
winner. This, by itself, is an interesting work. As in recent
times, using ML to design voting rules has been a topic of
interest (Anil and Bao 2021; Mohsin et al. 2022). So, we
thought that a classifier mimicking an existing voting rule
would be a natural case for the GAN-train and GAN-test
measures.

PLackett-Luce Fréchet Distance The Plackett-Luce
(PL) model for rankings is defined as follows:

The parameter space is Θ = {θ⃗ = {θj |1 ≤ j ≤
m, 0 < θj < 1,

∑m
j=1 θj = 1}}. The sample space is

L(A)n. Given a parameter θ⃗ ∈ Θ, the probability of any
full ranking σ = aj1 ≻ aj2 ≻ . . . ≻ ajm is PrPL(σ|θ⃗) =∏m−1

p=1
exp(θjp )∑m

q=p exp(θjq )
.

Given a particular preference profile, we can fit a PL
model on the data using expectation-maximization type
methods (Hunter 2004). So, for a training set of and gen-
erated set of preference profiles, we can learn separate PL
parameters (m parameters for an m-alternative scenario) for
each of the preference profile. We can assume that these PL
parameters are a latent representation of the preference pro-
files. Then, if we assume that the parameters are samples
from a multivariate m-dim Gaussian distribution, we get two
multivariate Gaussians: for the generated data (µG,ΣG) and
training data (µT ,ΣT ). Then, we can compute the Frechet
distance (Fréchet 1948; Vaserstein 1969) as follows:

d2 = (µT − µG)
2 + trace(ΣT +ΣG − 2(ΣTΣG)

1/2

Overfitting Evaluation
The other important measure for evaluation is whether the
model is simply memorizing training data and generating
samples exactly like or close to the training data. We define
memorization distance to evaluate this.

Memorization Distance To check if the GAN is simply
memorizing the training data instead of learning its distri-
bution, we use the memorization distance (Borji 2022) to
evaluate the level of overfitting occurring:

s (Sg, St) =
1

|Sg|
∑

xg∈Sg

min
xt∈St

(
1− |⟨xg, xt⟩|

|xg| · |xt|

)
(1)

Memorization distance is calculated from the inner prod-
uct between the training set St and generated dataset Sg .
The distance stands for the similarity of the two dataset. The
lower the value is, the more memorization is done by the
generative model.

5 Experimental Results
Experimental setup: To do the experiments, we com-
pare five generative models. We compare generated datasets
from GAN, VAE, SMOTE and simple sampling-based mod-
els. The SMOTE baseline is implemented using 5-nearest
neighbors. For each model, we generate dataset for three-
alternative and four-alternative scenarios. For each scenario,
we sample 200 different datasets, each containing 100 pref-
erence profiles. Then for each of the 200 datasets, we get
the mean value of all of the measures. Then, using the 200
values, we do pairwise Kolmogorov-Smirnov (KS) tests be-
tween different models to see if one performs better than the
other in terms of a feature in a statistically significant way.
We present the results separately for three alternative and
four alternative elections.

Quality measures:
Autoencoder (AE) reconstruction error (lower is bet-

ter): For four alternatives, we fine SMOTE is better than
GAN/VAE. Both GAN and VAE have very similar AE re-
construction errors. The statistical test couldn’t differentiate



Quality Overfitting
AE Reconstruction Error PL Frechet Distance GAN-train GAN-test Memorization

GAN 0.11 1.72E-03 0.96 0.78 1.75E-02
VAE 0.087 4.89E-02 0.96 0.80 3.03E-02
SMOTE 0.109 1.17E-01 0.96 0.78 3.36E-03
Sample without replacement 0.242 5.23E-03 0.93 0.74 0
Sample with replacement 0.239 5.23E-03 0.93 0.75 0

Table 1: Various quality and overfitting measures for generated data with four alternatives

Quality Overfitting
AE Reconstruction Error PL Frechet Distance GAN-train GAN-test Memorization

GAN 0.059 3.33E-04 0.99 0.96 2.27E-03
VAE 0.037 1.38E-02 0.98 0.97 3.25E-03
SMOTE 0.058 2.63E-03 0.97 0.97 7.33E-04
Sample without replacement 0.06 2.81E-03 0.96 0.98 0
Sample with replacement 0.059 6.62E-04 0.98 0.98 0

Table 2: Various quality and overfitting measures for generated data with three alternatives

between the errors for GAN/VAE. The error for SMOTE is
the lowest. Unexpectedly though, the sample based methods
have high reconstruction errors. However, the lower recon-
struction error for all of the deep generative models indicate
that the generated elections are not too different from the
training data. For three alternative elections, VAE has the
lowest AE reconstruction errors. But again, none of the re-
construction errors are significantly worse than the sample-
based methods, which indicates that all models are generat-
ing similar data to training data.

PL-based Frechet distance (PLFD) (lower is better):
From better to worse: Sample based methods and GAN

> VAE > SMOTE. The PLFD is lowest for GAN among
the deep generative models. It is closest to the sample based
baselines, but that is not unexpected. Since the samples have
same samples as in the training set, chances of learning very
similar PL values increase. The same conclusions are seen
for both four-alternative and three-alternative elections.

GAN-train and GAN-test for Borda (higher is better):
As mentioned before, the classification task we chose was to
predict Borda winner. We also choose a tie-breaking method
in lexicographic tie-breaking which makes the learning task
difficult. We use a simple SVM model for the training with
normalized preference profile as input feature. For all of the
models, both GAN-test and GAN-train values are very sim-
ilar. Doing pairwise comparisons using the KS-test for the
accuracy values, all distributions seem to be identical. So,
we cannot comment on comparative quality. But the reason-
ably high accuracy for a 4-class and a 3-class classification
task indicates that the quality of the generated data is high.

Overfitting measure:
Memorization distance (higher is better):
In terms of best to worst: VAE > GAN > SMOTE and

sampled methods. We note that the VAE performs the best
in this measure. This means that for the generated data, the
closest neighbor in training dataset is quite far away, which
means no memorization is occurring. For GANs as well,
while the memorization distance is lower than VAE, it is still

high enough that it is not memorizing training samples.
Summary: In summary, we can say that GAN and VAE

are best in terms of memorization. For quality measures,
SMOTE is best according to AE reconstruction error for
three alternatives but VAE is best for four alternatives. GAN
best according to PL-measure for both cases. All models
have similar evaluation measure values otherwise. It seems
to us that both GAN and VAE has managed to generate rea-
sonably good data with low memorization of training data
with GAN-generated data being slightly ahead in terms of
the quality measures.

6 Conclusion and Future Work
We contribute to the field of data generation by using deep
generative models, namely GAN and VAE, to generate syn-
thetic election data resembling preference profiles of var-
ious sets of options. In addition, we apply various evalu-
ation techniques existing in generative model literature to
our generated data in the domain of social choice. Each of
our trained generative models provide synthetic data that
achieve commendable scores across the chosen evaluation
metrics focused on testing for realness and diversity in gen-
erated data. Both processes are novel to the field of social
choice and generative models, and their success allows us to
introduce them as a new baseline for future work focused on
generating unique yet realistic synthetic election data.

From here, we can expand on our work by designing a
better method for feature engineering to extract only the crit-
ical information from every feature in the election data. Al-
though our current one is successful, finding improvements
in the structure of the features could lead to cleaner data or
an increased efficiency of training with the data. With possi-
ble restructuring of the data, the model will likely have to be
modified to capture the intricacies of the new data. Our cur-
rent work provides a great stepping stone to many potential
improvements to the quantity and quality of synthetic data
in the social choice domain, and we will continue to explore
those realms and outperform the previous best.
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