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Abstract

Wildlife trafficking (WT), the illegal trade of wild fauna,
flora, and their parts, directly threatens biodiversity and con-
servation of trafficked species, while also negatively impact-
ing human health, national security, and economic develop-
ment. Wildlife traffickers obfuscate their activities in plain
sight, leveraging legal, large, and globally linked transporta-
tion networks. To complicate matters, defensive interdiction
resources are limited, datasets are fragmented and rarely in-
teroperable, and interventions like setting checkpoints place a
burden on legal transportation. As a result, interpretable pre-
dictions of which routes wildlife traffickers are likely to take
can help target defensive efforts and understand what wildlife
traffickers may be considering when selecting routes. We pro-
pose a data-driven model for predicting trafficking routes on
the global commercial flight network, a transportation net-
work for which we have some historical seizure data and a
specification of the possible routes that traffickers may take.
While seizure data has limitations such as data bias and de-
pendence on the deployed defensive resources, this is a first
step towards predicting wildlife trafficking routes on real-
world data. Our seizure data documents the planned commer-
cial flight itinerary of trafficked and successfully interdicted
wildlife. We aim to provide predictions of highly-trafficked
flight paths for known origin-destination pairs with plausible
explanations that illuminate how traffickers make decisions
based on the presence of criminal actors, markets, and re-
silience systems. We propose a model that first predicts likeli-
hoods of which commercial flights will be taken out of a given
airport given input features, and then subsequently finds the
highest-likelihood flight path from origin to destination using
a differentiable shortest path solver, allowing us to automati-
cally align our model’s loss with the overall goal of correctly
predicting the full flight itinerary from a given source to a des-
tination. We evaluate the proposed model’s predictions and
interpretations both quantitatively and qualitatively, showing
that the predicted paths are aligned with observed held-out
seizures, and can be interpreted by policy-makers.

Introduction
Wildlife Trafficking (WT) broadly impacts biodiversity, hu-
man health, economic development, and national security
(UNODC 2017). It encompasses a wide array of species that
originate from, and are transported to, supply and demand
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markets around the world. WT spans over 150 countries
and includes more than 37,000 species of fauna and flora
(UNODC 2017). Transnational criminal organizations are
known to leverage the increasingly interconnected air trans-
portation network to move illegal wildlife products from
source to destination locations, generating $19 billion an-
nually in black market proceeds. (IATA; Utermohlen and
Baine 2018; ROUTES 2022). The massive scope, scale and
diversity of wildlife trafficking networks presents a com-
plex and dynamic challenge for authorities and researchers
trying to understand and interrupt the transiting of illegal
wildlife products using detection, interdiction, deterrence,
education, or other activities. Stakeholders working to com-
bat wildlife trafficking also face limited social,physical and
financial capital compared to other illicit activities such as
drug trafficking. Current practice is to rely heavily on trusted
and established personal relationships, ”tip offs” about spe-
cific flights, use of specially trained sniffer dogs, and edu-
cation of airport personnel; these practices can be success-
ful in one-off contexts, but lack a desired deterrent effect.
Network interdiction models can assist in determining the
optimal allocation of scarce resources along known traffick-
ing networks but have yet to be systematically applied to the
transiting staage of wildlife trafficking suppky chains(Smith
and Song 2020; Haas and Ferreira 2018). Data-driven meth-
ods for understanding underlying wildlife trafficking pat-
terns could help advance on the ground practice and expand
modeling techniques to a novel domain space and are a nec-
essary first step before targeted interdiction allocation can be
applied effectively and efficiently.

Recognizing the potential for data-driven methods to dra-
matically enhance solutions to the problem of wildlife traf-
ficking, multiple sectors have increased their data collec-
tion activities. For example, The Convention on Interna-
tional Trade in Endangered Species of Wild Fauna and Flora
(CITES) is a global agreement among governments to reg-
ulate international trade in species under threat that was es-
tablished in 1976 and is currently signed by 183 countries
and the European Union. TRAFFIC is an organization that
was established in 1976 by The World Wide Fund for Nature
(WWF) and International Union for Conservation of Nature
(IUCN) as a wildlife trade monitoring network to undertake
data collection, analysis, and provision of recommendations
to inform decision making on wildlife trade. In 2015, the



U.S. Agency for International Development (IUCN) estab-
lished the Reducing Opportunities for Unlawful Transport
of Endangered Species (ROUTES) Partnership to bring to-
gether transport and logistics companies, government agen-
cies, law enforcement, and conservation organizations to
eliminate wildlife trafficking from the air transport supply
chain. Importantly, these efforts have contributed to collec-
tion and synthesis of a limited but growing global databases
of illegal wildlife trade seizure data.

Overall, the flight network’s widespread use for moving
illegal goods, as well as the presence of structured data
make it a promising setting for data analysis to help inform
defensive measures. Center for Advanced Defense Studies
(C4ADS), a nonprofit that is a member of ROUTES, pro-
duced in-depth summary analysis of the global wildlife trade
flight seizure data from 2009-2017 (Utermohlen and Baine
2018) and 2016-2018 (Utermohlen 2020) and derived in-
sights based on observed concentration of illegal activity
and outliers. Some studies and reports describe traffickers’
modis operendi, or factors that may influence their decisions
to traffic products through certain ports over others (String-
ham et al. 2021b; Arroyave et al. 2020). Factors, such as
larger airports with higher volume, prevalence of corruption,
lower financial costs, and smaller legal penalties, have been
shown to possibly be beneficial for traffickers (Gore et al.
2022). However, there is limited quantitative research into
the factors that impact traffickers’ transit choices and their
relative importance (Magliocca et al. 2021; Stringham et al.
2021a,c). In fact, to our knowledge, to date predictive mod-
els have not been applied to the wildlife trafficking domain.
Machine learning models can be instrumental in extrapolat-
ing the patterns from the limited seizure data to other air-
ports and routes. They can highlight important factors and
their weights to provide insight into traffickers’ objectives
that can be utilized when making interdiction decisions and
predicting trafficker responses.

To this end, in this paper we formulate wildlife trafficking
across the global flight network as a route prediction prob-
lem on a graph, synthesize historical seizure data with data
that describes airport nodes and flight edges, and propose a
maximum likelihood machine learning model that exploits
recent developments in differentiable optimization. In par-
ticular, we model probabilities of trafficking on each edge
in the transportation network as a function of node and edge
features, and train the model by comparing the maximum
likelihood path (identified by computing the shortest path in
log space) to the ground truth paths. We demonstrate good
predictive power of our model. We analyze our model’s re-
sults to understand the discrepancies between our predic-
tions and the ground truth seizure data. By utilizing an in-
terpretable linear model with respect to input features, we
are also able to provide feature importance insights.

A key area of concern in combating WT is the conver-
gence of multiple forms of illicit trade (Stringham et al.
2021c; Gore et al. 2019). Convergence can take a variety of
forms. For instance, revenue from WT activities can fund
arms trafficking. Additionally, the people, countries, and
transit routes used for various forms of trafficking can sub-
stantially overlap due to factors that are mutually benefi-

cial. Convergence has long been an area of concern but the
amount of scientific, quantitative, evidence for convergence
is still limited (Gore et al. 2021). Our work makes a step to-
wards quantifying the scale and impact of convergence by
directly incorporating measures of other illicit activities at
given locations as features when predicting wildlife traffick-
ing paths. Understanding the impact of other illicit activities
on the path probabilities of traffickers provides a quantitative
measure of geographic convergence.

Related Work
The overall problem of learning route choices may be con-
sidered an inverse optimization problem, where we are given
“solutions” to optimization problems and we want to iden-
tify what optimization parameters yields those observed so-
lutions as optimal (Ahuja and Orlin 2001). Indeed, previous
work has modeled hidden latencies for travel networks by
solving an inverse shortest path problem (Zhang and Pascha-
lidis 2018), or learning transportation preferences for a road
network which results in a given traffic flow on the network
(Fosgerau, Paulsen, and Rasmussen 2022).

Recent work in the machine learning literature has investi-
gated how to integrate optimization solvers as differentiable
components in machine learning pipelines. This effectively
allows the model designer to state that the model predic-
tions will be used downstream by a structured optimization
problem which will output an optimal solution to a prob-
lem with given predicted inputs. The seminal OptNet pa-
per (Amos and Kolter 2017) introduces the quadratic opti-
mization program as a differentiable layer for use in deep
learning pipelines, by implicitly differentiating through the
KKT optimality conditions, with followup work extending
the approach to linear programs (Wilder, Dilkina, and Tambe
2019). In a different vein, researchers investigated differen-
tiating through blackbox optimizers (Pogančić et al. 2020)
and differentiating through maximum likelihood estimation
which can represent the optimal solution to a mathematical
program (Niepert, Minervini, and Franceschi 2021). Our ap-
proach directly builds off of (Pogančić et al. 2020) and lever-
ages empirical insights in order to speed up gradient com-
putation. Lastly, several approaches for smart predict then
optimize have been proposed which compute subgradients
of the optimal solution with respect to the inputs in order
to train the predictive model (Elmachtoub and Grigas 2021).
This smart predict then optimize area has work on applica-
ble theoretical guarantees and integration with decision trees
(Balghiti et al. 2019; Elmachtoub et al. 2020).

Prior work has successfully used machine learning in
the context of wildlife poaching in conservation areas, but
poaching is only the ”first” step in the wildlife trafficking
supply chain. (Xu et al. 2021; Gholami et al. 2018; Nguyen
et al. 2016). Poaching-oriented approaches consider classifi-
cation models that predict the likelihood of snare detection at
a given spatial location to inform ranger patrolling efforts at
the sourcing of wildlife. While these works demonstrated the
ability to predict poacher behavior at each pixel of a given
conservation area, here we address the global wildlife trade
problem of learning trafficker route choices on the broader
international air transportation network.



Figure 1: Visualization of itineraries with historical seizures in red as well as a subset of the global flight network in grey.
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EDGE FEATURES
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Table 1: Node and edge features of the flight network. Fea-
tures in Bold were selected by recursive feature elimination.

Flight Itinerary Prediction Formulation
We formulate the problem of predicting trafficker flight
paths connecting a given source airport s and intended desti-
nation d airport as a supervised learning problem of predict-
ing a path from s to d on a flight network represented as a
directed graph G. The flight network G represents airports
as nodes and the flights between them as directed edges.
We augment the flight network with WT-related features
ϕ on both nodes ϕv and edges ϕe. We collect N ground-
truthed trafficker paths Dπ = {πsi,di

}Ni=1 from centralized

databases of seizure reports. These reports contain the traf-
fickers’ intended itineraries between fixed source si and des-
tination di. We encode these WT itineraries πi as paths in
the flight network, representing them as either a sequence of
airport nodes or flight edges as needed.

Our data sources, collection and synthesis is described in
the section “Data Sources”. To get a sense of the magnitude
of the problem at hand, we visualize the observed trafficker
paths as well as 20% of the full flight network in Fig 1. We
subsample due to the density of the global flight network
consisting of 14,118 flight edges connecting 1,933 airport
nodes, rendering the image unreadable otherwise.

Formally, we aim to train a model that correctly predicts
the observed structured path πi given the input source si,
destination di, flight network G, and features ϕ.

Predictive Model: Edge Transition Estimator
In order to predict full flight paths from features on just
edges and nodes, we cannot simply predict how likely any
individual path is, as the number of possible simple paths is
exponentially large in the size of the network. Instead, we
consider predicting a probability for each edge which then
can be used to compute path likelihood.

We propose an approach for modeling the path prediction
problem by predicting “transition” probabilities, or proba-
bilities on which flight edges a trafficker may take to exit a
given “current” node. This models the trafficker as taking a
biased random walk from the source airport to the destina-
tion airport on the flight network where our model learns the
biased probabilities given edge and node features. With this
transition probability modeling approach, we can compute
the probability of taking any given source-destination path
as being the product of individual edge probabilities.

Formally, we model the problem as finding the probabil-
ity P (i, j) of using a directed edge (i, j) to leave a starting
node i. Here, probabilities on all edges leaving a given node
i sum to 1. We use a parametrized model m, with parameters
θ, to obtain probability estimates given the relevant features
i.e. P̂ (i, j) = m

(
ϕe
i,j , ϕ

v
i , ϕ

v
j ; θ

)
. For notational simplicity,

we consider the feature vector for a given edge to be the con-



catenation of edge-specific features, origin features and des-
tination features ϕi,j =

[
ϕe
i,j , ϕ

v
i , ϕ

v
j

]
. The edge probability

prediction model limits the number of trained parameters to
prevent overfitting. This parameter sharing means that the
same model is used to predict which flights will be taken out
of an airport whether it is Addis Ababa or Charles de Gaulle.
Furthermore, by predicting edge probabilities from edge and
node features, we can understand how these features impact
our model’s estimates and thus better understand what fac-
tors may be driving wildlife trafficking. Hence, in our ex-
periments we use a linear model relating the features to the
predicted probabilities to ensure that the resulting model is
interpretable.

We denote the set of edges leaving i as δ(i), and fully-
specify our linear model as making predictions on each edge
as computing logits with a linear model, and using a softmax
to normalize the edge logits based on the flight origin node
to ensure that the outgoing probabilities sum to one. Math-
ematically our probability prediction model is described in
Equation 1.

P̂ (i, j) = m
(
ϕe
i,j , ϕ

v
i , ϕ

v
j ; θ

)
=

exp (θTϕi,j)∑
j′∈δ(i)

exp (θTϕi,j′)
(1)

Our formulation ensures that the output probability esti-
mates are a differentiable function of the parameters θ to be
trained using standard deep learning libraries.

With the given formulation, the probability of a
path P (π) is the product of individual edge probabili-
ties Π(i,j)∈πP̂ ((i, j)|i). Furthermore, we can identify the
model’s highest-likelihood path by finding a shortest path
with edge weights corresponding to the negative log proba-
bility. A path minimizing the sum of negative log probabil-
ities is a path that maximizes the sum of log probabilities
which, due to the logarithm’s product rule and monotonic-
ity, is a maximum likelihood path. The goal now is to find
model parameters θ such that the observed trafficking paths
π have the highest likelihood.

At deployment time, this edge transition based model will
enable us to identify easily the highest-likelihood path by
solving a shortest path problem in log probability space,
obtain other highly-likely paths by identifying other near-
optimal solutions, and allows us to easily evaluate the likeli-
hood of any other alternative path.

Model Training: Path-Integrated Learning
Given that we want to predict full paths in the flight network,
we propose training the parameters θ to directly minimize
differences between the predicted highest-probability path
and observed trafficking paths. We consider a differentiable
pipeline and loss function that directly aligns model training
with the problem of recovering the ground truth path, and
can be optimized using gradient descent.

Using the above definition of our edge transition proba-
bility estimator, we express model training as solving the
optimization problem in Equation 2 which minimizes the
expected Hamming loss between a given ground-truth path
πs,d with corresponding source s and destination d against

the highest-likelihood path π̂s,d predicted by the model
connecting that source to that destination. The highest-
likelihood path is computed by Single Source Single Des-
tination shortest path solver (SSSDSolver) over the negative
log of predicted transition probabilities P̂ . Transition prob-
abilities P̂ are computed according to Equation (1).

Ultimately, to train the model we compute gradients for
the model parameters via backpropagation of the hamming
loss to the predicted highest-probability path π̂, back to the
predicted transition probabilities P̂ , and then to the model
parameters θ.

min
θ

Eπs,d

[
H

(
πs,d,SSSDSolver

(
−log

(
P̂
)
; s, d

))]
(2)

For completeness we can define the single source single
destination shortest path path solver in Equation (3) as find-
ing the path minimizing the sum of weights on edges used in
the path π, which in our case are negative log probabilities.

SSSDSolver(w; s, d) = argmin
πs,d

(∑
(i,j)∈πs,d

wi,j

)
(3)

Here we can use any off-the-shelf shortest path solver
without worrying about negative edge weights since the
probabilities are all between 0 and 1 (exclusive), so the neg-
ative log of the probabilities are all positive values. In prac-
tice, we use Dijkstra’s shortest path algorithm. Note that
the forward pass to get predicted path π̂ is the same ap-
proach we use for determining the highest-likelihood path,
thus aligning our model’s training with the overall deploy-
ment pipeline of correctly identifying the full path.

In order for us to use gradient descent to train our model
parameters, we need to ensure that all steps from the model
predictions to the loss evaluation are differentiable so that
gradients may be easily computed using chain rule. All
of the components except for the SSSDSolver are readily
differentiable functions available in Pytorch (Paszke et al.
2019), as a result we need to define a backward pass for the
shortest path solver to enable model training.

Using the formulation enabling differentiation of black-
box solvers proposed in (Pogančić et al. 2020), we make our
forward and gradient update explicit below. In the forward
pass we simply solve the shortest path problem and cache
the solution π̂ := SSSDSolver(w; s, d). The backward pass
itself expects incoming gradients from the loss layer, and re-
turns outgoing gradients with respect to the input edge costs
w. Overall, the intention of the gradient is to give an in-
dication of what changes in the edge costs w will produce
the desired change in the returned path to minimize the loss
and better align the path with the ground truth solution. The
method for differentiating blackbox solvers introduced in
(Pogančić et al. 2020) essentially perturbs the input objec-
tive coefficients w in the direction of the gradient to find a
“locally-improved” solution. It then computes the gradients
as the difference between the resulting “locally-improved”
solution and the previously predicted solution. When used in
conjunction with the hamming loss, the “locally-improved”



objective coefficients are simply the input objective coeffi-
cients with a given amount increased or decreased depend-
ing on whether the decision component, such as the edge
usage, should be used or not. In order to specify the de-
gree that the input costs should be perturbed, the authors use
a hyperparameter λ which determines the degree to which
the weights w should be perturbed in the desired direction.
Formally, in the backward pass we are given input gradi-
ents ∇π̂L of the loss with respect to the shortest path π̂. We
compute improved edge weights w′ = w+λ∇π̂L. Then we
re-solve the problem with improved edge weights to find a
better solution π′ = SSSDSolver(w′; s, d). Finally, we com-
pute gradients of this layer as − 1

λ (π̂ − π′).
In our setting, this method corresponds to solving the

shortest path problem with perturbed weights where weight
is slightly decreased on edges that should appear in the
ground truth solution and slightly increased on edges that
aren’t in the ground truth solution. The gradient that is
passed back to the edge costs is the difference between the
predicted path and the “locally-improved” path. Intuitively,
the approach aims to decrease cost on edges that should be
in the locally-improved short path but aren’t in the predicted
path, and increase cost on edges that are in the outputted
shortest path but don’t appear in the locally-improved path.
Additionally, in our initial experiments we found that perfor-
mant values of λ were large enough so that the weight per-
turbation eclipsed the initial weights themselves, meaning
that overall the “locally-improved” solution was simply the
ground truth solution. As such, to cut the number of solves
down by half, we simply used the ground truth solution path
π as the “locally-improved” solution.

Note that this approach is akin to updating the gradients
such that it scores the ground truth solution π to have better
objective value than the predicted solution π̂. Additionally,
in this scenario we consider that the path π is encoded as a 0-
1 vector with a given entry indicating whether edge (i, j) is
used in the path or not. As such, the weight vector is updated
by the difference between path solutions.

Model Training: Edge-Myopic Learning

We compare our path-integrated learning method with an
approach that is trained to minimize the Kullback–Leibler
(KL) divergence between the edge probabilities computed
directly from training data P ′ to the edge probabilities pre-
dicted as a function of features P̂ a. This approach focuses
on correctly predicting rates at which different edges are
used for trafficking in the ground truth rather than looking
at full paths. Using raw training data, we estimate transi-
tion probabilities P ′(e) as the number of times that a given
flight e is used for trafficking divided by the number of times
that the source airport is used for trafficking. The predictive
model’s parameters are then trained to closely match these
transition probabilities based on the given features. Given
probability predictions P̂ and data-driven estimates P ′(e),
the KL divergence is KL

(
P̂ ||P ′(e)

)
=

∑
e P̂e log

P̂e

P ′(e) .
Overall, the Edge-Myopic learning trains the parameters θ
to minimize this edge-level KL divergence.

Data Sources
Centralized and comprehensive data sources are critical for
combating wildlife trafficking (Gore et al. 2022)however
they are often lacking in practice, complicating the applica-
tion of models to different domains. In our experiments we
leverage data regarding wildlife trafficking seizures, flight
pricing, available flights, and indices of general crime preva-
lence and resilience infrastructure. The global flight net-
work was collected from OpenFlights.org which hosts open
source information about airports, routes, and flights. The
data was last updated on January 2017, and we have man-
ually added several airports and routes to ensure that we
can place as many seizure records on the flight network as
possible. Overall, this dataset allows us to construct a flight
network of 1,933 airport nodes connected by 14,118 flight
edges.

For each flight edge we record the distance and collect
flight pricing estimates using the Skyscanner API (skyscan-
ner 2020). Since flight pricing depends on several compo-
nents such as the amount of time before the flight, we collect
prices for all flight routes one month in advance. For each
flight edge, we used the API on October 14, 2021 to request
flight quotes for November 2021. The API did not return
valid responses for several airport pairs due to no valid flight
plans existing in the database accessed by the API which
we determined manually from searching google flights. Ad-
ditionally, we note that data was collected during the coro-
navirus pandemic impacting flight availability, as historical
data was not available.

Each airport is associated with its country’s metrics re-
ported in the Global Organized Crime Index for 2021 (Crime
2021), the first year the indices were published by the Global
Initiative Against Transnational Organized Crime (GITOC).
These indices represent expert opinion of a country’s rela-
tionship with various forms of organized crime, including
the prevalence of different criminal actors, strength of re-
silience resources, and presence of criminal markets. These
indices score countries from 1 to 10 based on 5 rounds of
anonymous and independent expert reviews in 2020. We
also add information about whether the airport’s country is
a member of CITES, the city’s population, and the number
of flights that serve the given airport. The node and edge
features we collected are summarized in Table 1.

We obtained seizure data from the Wildlife Trade Por-
tal (WTP) (TRAFFIC 2021) through which TRAFFIC pro-
vides historical seizure data with detailed records like in-
tended itinerary (source, destination, transit points), traf-
ficked wildlife, trafficker details, and legal outcomes. In to-
tal, we accessed 1,067 records between 2017 and 2021 to
synthesize a dataset of 454 itineraries of wildlife trafficking.
Only 362 of the 1,933 airport nodes in the global flight net-
work are used by traffickers in the historical seizure data,
highlighting the data sparsity.

Seizure data provides a glimpse of how WT networks op-
erate, alert experts to trends in supply and demand for differ-
ent species, and point to key locations for deterring wildlife
crime (Kurland and Pires 2017). However, it is important to
understand the biases in seizure data due to being collected
by different law enforcement agencies, using several means



Training Method Features used Path recall ↑ Edge recall ↑ Edge precision ↑ Edit distance ↓
Edge-Myopic Learning Selected 89.6% (1.2) 83.1% (2.6) 86.1% (1.0) 0.115 (0.044)
Path-Integrated learning Selected 89.9% (2.0) 83.3% (3.3) 86.5% (2.2) 0.106 (0.0232)
Edge-Myopic Learning All 89.2% (2.5) 82.8% (3.5) 85.5% (3.1) 0.113 (0.027)
Path-Integrated learning All 89.1% (3.1) 82.6% (4.0) 85.4 (3.4) 0.113 (0.034)

Table 2: Summary statistics from 5-fold cross validation of models using either the full set of features or an algorithmically-
selected subset. We evaluate our two training methods, edge-myopic learning which aims to correctly predict how often indi-
vidual edges are used, and path-integrated learning which aims to identify the complete intended source-destination path. We
report the average performance across folds as well as the standard deviation of the given metrics across folds.

of detection, against various criminal agents (CITES; Gore
et al. 2021). As a result, seizure data not only reflects the
criminal network, but also the defensive resources. Never-
theless, seizure data is one of the few tools we have available
to peer into WT networks in a scalable manner.

Experiments
Feature Selection
Feature selection identifies the highest-impact features, lim-
its overfitting, and avoids correlated features. We use re-
cursive feature elimination to iterateively remove the least-
useful feature from the current feature set by testing each of
them and evaluating the change in 5-fold path recall. Since
node features appear twice for a given edge, once for the
edge’s head and again for the tail, we drop both as needed.
The full set and selected features in bold are in Table 1.

Metrics
We evaluate the models using 5-fold cross-validation, pro-
ducing a prediction for every source-destination path using
a model that wasn’t trained on information from the given
source-destination pair. We evaluate using several metrics at
the path and edge level.

Path Recall is the percent of the ground truth observed
paths the model was able to completely predict to be
the highest-likelihood path. Formally, given the N ground
truth paths in the dataset Dπ , we compute path recall as
1
N

∑
πs,d∈Dπ δ (πs,d = π̂s,d). Here δ is just a 1 if the paths

are completely equal (taking the same sequence of edges)
and 0 otherwise. Higher values here mean that our model is
not likely to miss out on trafficked paths.

Edge Recall is the percent of trafficked edges that our
model predicts to have trafficking. Mathematically this is(∑

πs,d∈Dπ

∑
e∈πs,d

δ (e ∈ π̂s,d)
)
/
∑

πs,d∈Dπ |πs,d|. High
values here mean that a large proportion of observed traf-
ficked edges are picked up by our model.

Edge Precision measures the percent of edges that
our model predicts to have trafficking which did
in fact exhibit trafficking. Mathematically this is(∑

πs,d∈Dπ

∑
e∈π̂s,d

δ (e ∈ πs,d)
)
/
∑

πs,d∈Dπ |π̂s,d|.
High values here mean that our model’s predictions are
trustworthy and that domain-users can expect that the
model’s predictions will likely contain trafficking.

Edit Distance or Levenshtein distance (Levenshtein et al.
1966), is the smallest number of “edits” (additions, re-
movals, or substitutions) needed to transform the predicted
path into the ground truth path, considering the itinerary to
be a sequence of airports visited. Low edit distance means
that the predicted paths are similar to the observed paths.

Results Discussion
We present numerical results in Table 2, computing the av-
erage and standard deviation in performance with 5-fold
cross validation. Given the data size of only 454 itineraries,
the differences in performance come from only a few pre-
dicted paths. Additionally, both models benefit from feature
selection, with feature-selected path-integrated learning im-
proving over edge-myopic learning. The model performance
is high in that the models are able to recall 89% of the
paths completely, 83% of the edges, and the predicted edges
contain trafficking at a rate of 86%. Across all folds, our
model differs with 45 ground truth paths between 25 origin-
destination pairs. Given the data bias, the predicted alternate
routes may contain wildlife trafficking even though it is not
present in the ground-truth data. We visualize representative
discrepancies between predicted and observed paths in Fig.
2 with predicted paths in blue and observed paths in red.
We categorize the discrepancies into 10 origin-destination
pairs where our predictions shortcut the observed itinerary
by removing stops (Fig. 2a), and 13 cases where our model
predicts different layovers than the observed (Fig. 2b, 2c),
identified as highly plausible in informal consultations with
experts. The two cases where our model predicted additional
layovers are visualized in Fig. 2d and are likely errors.

We visualize the path-integrated learning model’s feature
importance in Fig. 3. Here, positive values mean that high
feature values induce high estimated probability, whereas
negative values mean that high feature values induce low
estimated probability. Overall, the model considers that traf-
fickers are likely to travel to locations with high arms traf-
ficking as well as resilience against money laundering. The
convergence between wildlife trafficking and arms traffick-
ing has been documented and has broad implications for in-
terdiction (Spevack 2021). Additionally, the model predicts
that traffickers are less likely to enter regions with high flora
crime, criminal networks, or human trafficking. The negative
value for the flight destination’s flora crimes is interesting
and warrants further investigation, and may reflect seizure
data bias, or traffickers wanting to flee suspicion.



(a)
(b)

(c)

(d)

Figure 2: Visualization of discrepancies between Path-Integrated predicted itineraries in blue and observed itineraries in red.
Additionally, domain experts identified two likely errors in Fig. 2d where our model’s predictions are unrealistic.

Figure 3: Feature importance boxplot of the model coefficients across 5 training folds. Positive values means that higher pre-
dicted trafficking rates when the indicator is prevalent and negative values indicate lower rates when the indicator is prevalent.

Conclusion

We approach the problem of predicting wildlife trafficking
on the flight transportation network with differentiable opti-
mization. To align our network training with the goal of cor-
rectly identifying full paths, we train with a differentiable
highest-probability path solver We showed that our model
learns over the available airport and flight features with lim-

ited training data, and can likely further improve as more
seizure data is collected. Lastly, we identify several features
that may contribute to traffickers being more likely to take
a given path. We hope that our method will help inform in-
terdiction efforts and the study of wildlife trafficking net-
works, and we intend to use our predictions in conjunction
with combinatorial interdiction in future work.
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