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Abstract

Invading alien plants cause significant damage to biodiver-
sity, agriculture, and the economy. Remote sensing coupled
with deep learning is a promising approach to map their pres-
ence. However, seasonal variations in plant biology, field sur-
vey limitations, and the need to use expensive high-resolution
imagery due to sparse coverage conditions severely limit
the amount of training data that can be collected. We de-
velop a patch-based framework using convolutional neural
networks (CNNs) to predict the distribution of invasive plants
from four-band high-resolution satellite imagery. The frame-
work is applied to map three major invasive plants in a bio-
diversity hotspot. To cope with data challenges, we employ
a robust training and evaluation framework using a multiple-
hold-out method and Bayesian-optimization-based parameter
tuning for model selection and transfer learning. Distribution
maps obtained from ensemble predictions indicate that the
three invasive plants are widespread in the landscape, even at
higher elevation levels in the midhills of Nepal that are con-
sidered to be unsuitable for establishment. We evaluate sev-
eral CNNs with various patch sizes, band subsets, initial CNN
weights, and image acquisition periods.

Introduction
Biological invasions cause unprecedented disruptions to
native ecosystems, negatively impacting health and econ-
omy (Pyšek and Richardson 2010). The mean cost of global
invasions is estimated to be US $26.8 billion per year (Di-
agne et al. 2021). The invasive species problem is a major
impediment to the achievement of several sustainable devel-
opment goals (UN 2019): Good Health and Well-being, Cli-
mate Action, Life Below Water, Life on Land, to name a
few. Constructing accurate species distribution maps is an
essential task in ecology and biogeography and help assist
in monitoring, early detection, and mitigation efforts. In-
creased availability of high-resolution remote-sensed data
has made large-scale surveillance of invasive species a vi-
able option (He et al. 2015). Coupled with recent develop-
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ments in artificial intelligence, this approach holds consider-
able promise in large-scale surveillance of invasive species
spread (Ball, Anderson, and Chan Sr 2017).

Deep learning methods have been applied extensively
in remote sensing in the last decade. Several survey pa-
pers (Ball, Anderson, and Chan Sr 2017; Zhang, Zhang, and
Du 2016; Kamilaris and Prenafeta-Boldú 2018) provide a
comprehensive list of state-of-the-art models in this area. In
the context of environmental health and agriculture, there are
many works pertaining to land cover classification and crop
monitoring (Ball, Anderson, and Chan Sr 2017; Shermeyer
et al. 2020; Kamilaris and Prenafeta-Boldú 2018; Jia et al.
2017; Kussul et al. 2017). However, species identification
and mapping using high-resolution satellite and unmanned
aerial vehicle (UAV) imagery is an emerging area (Katten-
born, Eichel, and Fassnacht 2019; Kislov and Korznikov
2020; Korznikov et al. 2021).

The focus region for this study is Nepal’s Chitwan Anna-
purna Landscape (CHAL), which is part of the Himalayan
biodiversity hotspot. Its unique native biodiversity is threat-
ened by the combined effects of climate change and ever-
increasing human activities such as trade and tourism, a sig-
nificant consequence of which is increased instances of bi-
ological invasions. There have been several works on map-
ping invasive alien plant species (IAPS) and developing suit-
ability maps in the Himalayan landscape (for e.g. (Shrestha
2016)). We focus on three pervasive invasive species – Lan-
tana camara, Chromolaena odorata, and Parthenium hys-
terophorus – well-known for their severe negative impact on
agriculture, natural ecosystems, and human health and are a
severe threat to biodiversity in the CHAL region.

Challenges. Training deep learning models requires large
amounts of data, which is seldom available in many remote-
sensing applications, including IAPS mapping, due to field
survey limitations and lack of high-quality satellite im-
agery (Ball, Anderson, and Wei 2018). Several constraints
imposed by the biology of the plants, seasonality and ter-
rain make field survey particularly challenging. The moun-
tainous terrain of the CHAL limits access to many areas.



Much of the survey is limited to roads, residential and ur-
ban areas, leading to fewer data points and roadside bias.
Unlike crops in a field, the target species coverage might be
sparse and is likely co-located with other plants (Figure S1
in the supplement). Due to such sparse coverage conditions,
freely available moderate-resolution images are seldom suf-
ficient for detection. However, high-resolution images are
not openly available and are too expensive to acquire for the
entire CHAL region. This means that not only is the cover-
age of the acquired imagery small, but it is also heteroge-
neous; images can differ in terms of the number of bands,
satellite source, illumination, time of capture, etc. The lack
of spatial coverage and spatial resolution also makes it chal-
lenging to utilize publicly available databases1. Differences
in the appearance of plants across seasons lead to further re-
strictions. In Nepal, September to December and February to
April are relatively cloud or fog-free; therefore, most of the
optical sensor data is collected during this time. The color
and appearance of certain plants greatly vary between sea-
sons (C. odorata and P. hysterophorus for example). There-
fore, budget, weather, and seasonality constraints imposed
by multiple invasive species drastically reduce the quantity
of usable imagery.

Contributions. In this collaborative work, botanists, ecol-
ogists, GIS specialists, and computer scientists from Nepal
and the US address the problem of mapping multiple in-
vasive species in the CHAL region. We develop a general
framework to construct species distribution maps from high-
resolution satellite imagery using deep learning.
• We present a patch-based approach for constructing

species distribution maps from satellite imagery using
CNN. Square patches of satellite imagery annotated by
field survey data are used to train the CNN. This approach
ensures that adequate area is captured in a survey location
to account for sparse coverage of the plant and inaccuracy
of the GPS device. It also enables us to leverage state-
of-the-art architectures designed for classification of reg-
ular images in computer vision applications. Unlike pixel-
based approaches (Wang et al. 2008), CNNs can effec-
tively learn spatial patterns and textures that characterize
the target species from patches of images.

• We applied several popular CNNs developed for classify-
ing RGB images by suitably modifying them so that they
could be applied to four band satellite imagery.

• The training framework addresses the problem of inad-
equate labeled data and image heterogeneity in several
ways. We use multiple-hold-out approach for model ex-
ploration coupled with a Bayesian optimization frame-
work for hyperparameter tuning. We also use the popular
transfer learning technique of initializing the CNNs with
weights obtained from pre-training them on large labeled
datasets. We account for image acquisition period by in-
cluding this information as a feature.

• Classifiers were trained and analyzed for different net-
works, various patch sizes, combinations of frequency
bands, initial filter weight, survey data subsets, and image
acquisition period.

1http://www.imapinvasives.org

• Species distribution maps were created based on ensem-
ble averaging of the selected models. Using these maps,
we analyzed the extent of invasion by district and with
respect to elevation. The maps indicate that the three inva-
sive plants are widespread in the landscape, even at higher
elevation levels in the midhills of Nepal that are consid-
ered to be unsuitable for establishment.

From a methodological perspective, our work shows the fea-
sibility of applying modern machine learning techniques to
construct species distribution maps. From a biological in-
vasions perspective, our framework not only helps map the
current state of IAPS establishment, but can also aid in un-
derstanding the spread pathways. By applying the models
learned to satellite imagery from different time periods, the
pattern of spread can be reconstructed over time. Coupled
with bioclimatic variables and information on human activi-
ties, factors contributing to the spread can be identified.

Framework
We describe the survey procedure, image dataset, and the
patch-based convolutional neural network framework to
map species distribution using multi-band high-resolution
satellite imagery.

Survey data and imagery data. The occurrence data and
location of the study species’ L. camara, C. odorata, and
P. hysterophorus was collected by on-location surveyors us-
ing hand-held GPS primarily during September-December
(autumn and winter) and March-May (spring) between the
years 2016 and 2020. No survey was conducted during the
June-August period (rainy season). The surveyors marked
locations of both presence and absence took photos at some
of these coordinates. High-resolution imagery from four
different satellites was used in this work. This data has
panchromatic imagery comprising of 8- and 4-band multi-
spectral imagery spanning four different satellites with spa-
tial resolution varying from 1.24m to 1.65m. Since the im-
agery corresponding to the entire CHAL region is expen-
sive, we identified subregions for acquiring images so as to
capture human activity, diverse vegetation, and varying el-
evation levels observed in this area. A total of 53 images
were acquired, with each image captured in the year 2017
or 2018 and month falling in one of the survey periods (a
map with the images is provided in the supplement). The
main challenge is that there are very few images that sat-
isfy the cloud cover (< 5%) and time period criteria. We
have categorized the images based on the season they were
acquired. We have 28 images from the March-April period
referred to as “Spring” images. The remaining are from the
November-January period referred to as “Winter” images.
The number of survey points corresponding to each plant
varies and we note that most of the survey points belong
to the Winter category. It is to be noted that there is hardly
any overlap between the acquired images as our goal was to
select images covering as maximum an area as possible. A
detailed description of survey data, distribution of absence-
presence data and satellite image data are presented in the
supplementary material.
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Figure 1: Modeling framework: The modules correspond
to data preparation, feature vector generation, training, and
model selections, followed by application of the models to
generate species distribution maps and other analyses.

Workflow. The workflow is illustrated in Figure 1. Im-
age patches of kw × kw × nb pixels with the given co-
ordinates at the center are extracted from the satellite im-
age. Here, kw corresponds to the patch (or window) size
and nb corresponds to the number of satellite bands. The
problem of predicting whether the target species is present
in a given location is formulated as a binary classification
problem, where the patch corresponding to this location is
the input to the classifier. Given a patch X ∈ Rkw×kw×nb ,
the ith convolutional layer performs P affine transforma-
tions of the input features X(i) followed by a nonlinear ac-
tivation function τ : X(i+1)

p = τ(W
(i)
p X(i) + b

(i)
p ), where

W
(i)
p is a matrix that corresponds to the convolution opera-

tion performed by the pth spatially localized filter w(i)
p and

bp is the bias parameter. The output layer is a dense layer
that provides a score s

(i)
p between [0, 1]. The filters mini-

mize the cross-entropy cost function:
∑

vi log s
(i)
p + (1 −

vi) log s
(i)
p , where vi ∈ {0, 1} is the label. We experimented

with kw = 32, 64, 128, 256, and four frequency bands: Near-
Infrared (n), Red (r), Green (g), and Blue (b).

Models for classification. As for the classifier, we con-
sidered several CNNs – a class of shallow networks that we
defined and de facto standard visual recognition networks
such as VGG-16 (Simonyan and Zisserman 2014), Incep-
tionV3 (Szegedy et al. 2016), and Xception (Chollet 2017)
which have been designed for classifying RGB images into
multiple classes. As a baseline, we used the random for-
est model (RF) (Breiman 2001). We had to modify each
of these networks for our application. Firstly, these models
were originally designed for multiclass image classification.
We appended a final dense layer with softmax function as
the activation function. It provides a single score between 0
and 1 indicating the likelihood of presence. Secondly, these
networks are designed for RGB images, and therefore, sup-
port only three bands. For the nrgb mode, we expanded the
first convolution layer to accommodate the fourth band. De-
tails of the shallow networks is provided in the supplement.

Transfer learning and augmentation. To overcome the
lack of training data, various transfer learning (Pan and Yang
2009) techniques have been applied in deep learning for

remote sensing (Ball, Anderson, and Wei 2018). Transfer
learning corresponds to transferring knowledge from mod-
els trained in a feature space with abundant data and ap-
plying it to the domain of interest. Here, we follow the ap-
proach of Perez et al. (Perez et al. 2017). The VGG-16,
InceptionV3and Xception are initialized with weights from
the ImageNet dataset (Russakovsky et al. 2015). Since Im-
ageNet is a collection of RGB images, weights are only
available for the RGB bands. Accordingly, for the RGB
bands, we use the corresponding weights from the pre-
trained model. The mean of the RGB weights is applied for
the near-infrared. In addition, we use data augmentation by
applying geometric transformations (flipping and rotation)
to the feature vectors.

Model exploration and selection. The goal here is to ob-
tain predictions that are robust (reduce the chance of bias)
to the choice of the hold-out set. The process is outlined in
Algorithm 1, Given a species and a network, the set of la-
beled feature vectors fed to the training framework is deter-
mined by the window size (kw) for each patch, the bands in
the satellite imagery and the data collection period. For this
input, the framework uses a multiple-hold-out approach for
model exploration (Monteiro et al. 2016). This is an iterative
process which results in a different model for each iteration.
In one iteration, we first keep aside 20% of the dataset as
the hold-out or test set by randomly sampling data points
ensuring a 1 : 1 presence to absence ratio. The rest of the
dataset corresponds to the optimization set, used to train and
validate models during the model exploration process. Using
the optimization set, we tune the hyperparameters batch size
(16, 32 and 64), learning rate (sampled from a log-uniform
distribution with lower and upper bounds 0.0001 and 0.01,
respectively) and augmentation choice (binary) via Bayesian
optimization using Gaussian processes (Snoek, Larochelle,
and Adams 2012) (50 iterations). In one iteration of the opti-
mization process, a combination of the hyperparameter val-
ues is chosen to be evaluated. To overcome overfitting issues
due to limited data, we use the Monte Carlo cross-validation
(MCCV) technique (Burman 1989) for evaluating this set
of hyperparameter values. In the MCCV approach, multi-
ple train-validate splits of the optimization set are created
by randomly picking the data points for each group (80-
20 split of the optimization dataset). In order to evaluate
the candidate set of hyperparameter values, we consider 20
train-validate splits. For each split, training is performed by
minimizing the binary cross-entropy loss function using the
stochastic gradient descent method. The mean validation F1
score for the 20 splits is used to score the instance. Finally,
using the hyperparameter values obtained from the tuning
process, we train the CNN using the optimization set and
evaluate it using the hold-out test dataset. We consider five
rounds of hyperparameter tuning in the multiple-hold-out
process, yielding five top models for each pair. For the RF
model, we apply the same process with hyperparameters be-
ing number of estimators (200 to 2000), maximum features
(auto, square-root), maximum depth (10 to 100), bootstrap-
ping (binary), and a minimum number of samples per leaf
(1, 2, and 4).



Algorithm 1: Multiple hold-out model exploration
with Bayesian optimization.

Input : Window size kw, subset of bands, convolutional
neural network G(kw, nb) with pre-trained
weights (if any), labeled patches
X = {(X1, ℓ1), (X2, ℓ2), . . . , (Xn, ℓn)}, with
patch Xi ∈ Rkw×kw×nb and label ℓi ∈ {0, 1},
number of hold-out iterations η, number of
MCCV train-validate splits ω.

Output: Models {MG,j | 1 ≤ j ≤ t} with performance
evaluation.

// Multiple hold-out iterations
1 for j = 1, 2, . . . , η do
2 Prepare test dataset Xtest

j by randomly choosing 20%
of the input with equal number of presence and
absence points.

3 Let Xopt
j = X \Xtest

j denote the optimization set.
4 hyperparameters = BAYESOPT-

TUNE(G,Xopt, loss function: –avg. F1 score from MCCV)

5 MG,j = TRAIN(G,Xopt,hyperparameters)
6 end
7 for j = 1, 2, . . . , η do
8 eval[j] = EVALUATE(MG,j ,X

test)
9 end

Results
Classification performance and choice of models. We
discuss the performance of the classifiers trained on the la-
beled data generated from all the images and incidence data
from the three surveys. Recall that five rounds of training
and hyperparameter tuning were conducted for each patch
size (kw), a subset of frequency bands, and CNN. We aver-
aged the performance of the resulting models that emerge
out of model exploration in each round of the optimization
process. The results for different CNNs for kw = 64 and
bands nrgb are summarized in Table 1. For all species and
networks, the standard deviation of the test F1 score for the
models is low, showing consistency in performance across
different rounds of training. Among CNNs, models initial-
ized with ImageNet weights generally perform well. Further,
we note that InceptionV3, InceptionV3-P, Xception and
Xception-P consistently appear among the top-performing
models. However, many other models, including the base-
line RF, are not far behind. One observation about the RF
model is the high training accuracy, indicating some over-
fitting. We also note that for the class of models M(ℓ, χ),
as the number of layers ℓ and number of channels χ are in-
creased, the performance generally increases.

Patch size. For all the three species and the three top mod-
els, we observed that as kw is increased from 32 to 256, the
average test F1 score increases (Figure 2 top row). The larger
the patch size, the greater the coverage area, and therefore,
the chances of not capturing the plant within the patch due
to an error in recording the coordinates are reduced. Also,
if the plant is shrub-like, more plants will be accounted for,
leading to better detection. However, with increasing patch

size, there is a higher chance that two patches overlap due to
their corresponding survey points being close to each other.
If one of the coordinates is labeled 1 and the other 0, then
there is a possibility that at least one of the patches might
be misclassified due to the overlap. If both coordinates are
labeled 1, the likelihood of correctly classifying the corre-
sponding patches increases if the specimen is present in the
overlapping region. To investigate further, we computed the
Haversine distance between every pair of survey locations
for each species. Then, we counted the number of instances
where (a) two patches overlap and one patch is labeled 1
while the other is labeled 0 (mismatched pairs) and (b) both
patches are labeled the same (matched pairs). This happens
when two survey locations are at a distance at most

√
2 · kw.

This is plotted in Figure 2 (bottom row). We observe that
the number of overlapping pairs (matched or mismatched)
increases with patch size. There is a significant increase in
such pairs from 64 to 128 and 128 to 256. Hence, we have
fixed the patch size to be 64 for creating the distribution map
and further analysis.

Seasonality. The imagery dataset can be categorized into
two seasons: winter and spring (see Table S1 in the supple-
ment). Most of the survey points belong to images captured
in winter. To study how seasonal variations in the appearance
of plants can affect classification performance, we applied
two approaches. Throughout, we considered the following
two models: InceptionV3-P and Xception-P. In the first ap-
proach, we used only images acquired in winter. Omission
of image patches corresponding to summer can affect the
results in two ways. Firstly, the variation in appearance is
reduced, which could lead to an improvement in the per-
formance. At the same time, since the number of labeled
patches available for training reduces, it could lead to over-
fitting and a decrease in performance. The available data
points relative to the entire dataset are approximately 88%
for C. odorata, 90% for L. camara, and 75% for P. hys-
terophorus. The results are in Table 2 (1st column). Com-
paring with the results in Table 1 corresponding to all data
points for InceptionV3-P and Xception-P (reproduced in the
3rd column of Table 2), we see that the performance is sig-
nificantly better in the case of P. hysterophorus. In the sec-
ond approach, we added an extra channel to the input of the
CNN, which we refer to as the season channel. Recall that
the channel dimension is kw × kw, the spatial dimension of
the image. All the elements of the season channel were set
to 1 if the image was acquired in winter, 0 otherwise. The
idea here is that the model accounts for the season informa-
tion during the classification. The results are in the second
column of Table 2. We observe that this method yields infe-
rior performance compared to the first approach.

Species distribution maps. We generated a high-
resolution grid (≈ 50m×50m) and retained only those
points which were (i) present in the satellite images and
(ii) near major roads using the Open Street Map database2.
Both major and minor roads were considered. We deliber-
ately restricted our predictions to points close to roads due

2https://www.openstreetmap.org



Table 1: Average performance of representative classifiers for patch size 64 and nrgb bands across five different hold-out sets.
In each case, the top mean F1 scores are highlighted for each species. Full table is in the supplement.

Train acc. Test
accuracy precision recall mean F1 score std. dev.

species model

C. odorata

InceptionV3 0.747 0.713 0.683 0.8 0.732 0.0587
InceptionV3-P 0.919 0.829 0.799 0.884 0.838 0.0288

VGG-16-P 0.797 0.755 0.725 0.832 0.771 0.0431
Xception 0.801 0.761 0.729 0.832 0.773 0.061

Xception-P 0.963 0.855 0.838 0.884 0.86 0.0303
RF 1 0.676 0.641 0.811 0.715 0.0289

L. camara

InceptionV3 0.804 0.713 0.678 0.843 0.745 0.0456
InceptionV3-P 0.863 0.788 0.768 0.828 0.795 0.0279

VGG-16-P 0.776 0.704 0.705 0.698 0.7 0.0182
Xception 0.836 0.808 0.806 0.822 0.809 0.0297

Xception-P 0.916 0.803 0.792 0.822 0.805 0.0271
RF 1 0.701 0.635 0.935 0.756 0.0133

P. hysterophorus

InceptionV3 0.837 0.839 0.855 0.817 0.835 0.0266
InceptionV3-P 0.907 0.814 0.826 0.789 0.807 0.0465

VGG-16-P 0.851 0.763 0.795 0.703 0.746 0.0608
Xception 0.842 0.828 0.827 0.829 0.825 0.027

Xception-P 0.909 0.817 0.842 0.793 0.81 0.00749
RF 0.994 0.758 0.777 0.714 0.744 0.0289
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Figure 2: The first plot corresponds to performance of InceptionV3-P with increasing patch size. We have a similar result for
Xception-P in the supplement. The other two plots show the extent of overlap between image patches as the patch size is
increased.

to roadside bias in our field survey. With each chosen point
as the centroid, we constructed patches of size kw = 64.
For each of the CNN models under consideration, we
obtained the softmax values at each location. The average
of these softmax values (bagged predictor) was used as
an estimate of the probability of presence of the target
species in that location (Breiman 2001). The results of the
ensemble prediction are in Figure 4 for C. odorata. For the
remaining species, the maps are in the supplement. The
entire study region is divided into 14 subregions. The details
of each subregion can be found in Figure 4. The aggregated
prediction by administrative districts is in Figure 4 for
C. odorata and Figure 5 for the other two species.

Our results indicate that all the species are widespread
in the CHAL region on the roadsides. Generally, infestation
is observed more in the southern part of the CHAL region:
Nawalparasi, Chitwan, and Makwanpur. These districts are

in the Terai region, which is closer to the border with In-
dia. Northern parts of Nepal are at much higher elevations
and are generally considered unsuitable for the establish-
ment and growth of the studied IAS. The only exception
is the case of C. odorata in Rasuwa. Our results indicate
widespread prevalence in the Rasuwa district (Figure 5, Sub-
region 4), which is higher than the elevation ranges accepted
as suitable for C. odorata (Shrestha 2016). Also, upon in-
spection, experts on the ground believed that for the Tanahun
region (Subregions 5, 6, and 7 in Figure 4), the map exhibits
a lower infestation of C. odorata than observed. On the other
hand, for the Nawalparasi region (Subregion 10), our map
suggests more infestation of L. camara than observed on the
ground.

Analysis of performance with respect to model parame-
ters. In this analysis, we present results for InceptionV3-
P and Xception-P. To study the importance of the multi-
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Figure 4: Predicted distribution and survey locations for C. odorata. The distribution maps for the other two species are in the
supplement.

spectral bands, we performed feature ablation. We trained
the classifiers by dropping the target band. The performance
of these classifiers was compared to the reference model
with bands=nrgb. The results are in Figure S6 in the sup-
plement. In the case of InceptionV3-P, we see a slight
degradation in performance when the r band is omitted for
C. odorata and L. camara. We also analyzed the hyperpa-
rameters of the models derived from the Bayesian optimiza-
tion process (Figure S7 in the supplement). We observed
that for almost all models corresponding to P. hysteropho-
rus and L. camara, the batch size was 8. For C. odorata, the
batch size of most models was 32. For these models, we ob-
serve that the training accuracy is relatively higher than in
the other cases. This is in line with the general observation
that large-batch training tends to over-fit the models (Keskar

et al. 2017). We observed a large variation across models for
the learning rate. Also, augmentation yielded superior per-
formance in most cases.

Related work
The recent success of CNNs in image classification tasks
has led to their widespread adoption for remote sensing
data in the agricultural domain. Kamilaris and Prenafeta-
Boldú (Kamilaris and Prenafeta-Boldú 2018) provide an
overview of the use of CNNs in agriculture-based applica-
tions, including those that pertain to remote sensing imagery.
Jia et al. (2017) use several one-class classification mod-
els based on sparse-autoencoders to identify and map ma-
jor crops using high-resolution multi-spectral satellite data.
Kussul et al. (2017) develop an ensemble of CNN classifiers
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Figure 5: The extent of invasion by district. Only locations with a predicted probability > 0.5 have been accounted for. Further,
among these points, the locations are divided into three bins based on their probability values: (0.5, 0.7], (0.7, 0.9], and (0.9, 1].
For reference, the elevation range in meters above sea level (masl) is plotted in black.

Table 2: Seasonality: Average test F1 score for classifiers
with patch size 64. The first column corresponds to training
with only winter images. The second column corresponds to
using an additional channel to encode season information.
The third column contains values from Table 1 for reference.

Winter images Season channel All
species model

C. odorata
InceptionV3-P 0.81 0.771 0.838

Xception-P 0.813 0.777 0.86

L. camara
InceptionV3-P 0.808 0.786 0.795

Xception-P 0.826 0.828 0.805

P. hysterophorus
InceptionV3-P 0.843 0.798 0.807

Xception-P 0.853 0.812 0.81

for identifying various crop types with the classifier trained
on multitemporal multisource satellite imagery. However,
unlike regularly laid out croplands, invasive plant detec-
tion is much more challenging due to a lack of regularity
in their spatial extent. In recent years, landcover classifica-
tion using CNNs has become popular. In early 2020, the
SpaceNet 6 dataset and challenge (Shermeyer et al. 2020)
were announced. The dataset comprises Synthetic Aperture
Radar data and optical data from WorldView-2 (similar to
what we have used). The top five models of this challenge
used U-net encoder-based models. Most of these models
used pre-training using the ImageNet data.

Our work highlights the importance of plant phenology as
a limiting factor in identifying plants using remote-sensed
images. The importance of timing of image acquisition is a
vital topic. In fact, phenological differences between species
are considered an effective means of identifying invasive
plants (Bradley 2014). However, we would require a time
series of remotely sensed imagery, to take advantage of this
phenomenon. This is not always feasible due to the limited
availability of such images and the considerable expense in-
curred when relying on commercial datasets. Also, given
enough locations for which patches from both seasons are
available, transductive transfer learning techniques can be

Table 3: Subregions corresponding to each satellite image
are grouped together by their district. Also provided is the
elevation range in meters above sea level (masl).

District Subregions Elevation range (masl)
min max

Kaski 1,2 594 1804
Gorkha 3 506 1885
Rasuwa 4 600 3464
Tanahun 5,6,7 176 1258
Dhading 8,9 387 1804
Nawalparasi 10 113 313
Chitwan 11 135 203
Makwanpur 12,13,14 200 790

applied to utilize models developed for one season to train
models on datasets for other seasons (Pan and Yang 2009).

Conclusion
There are several directions to be explored to enhance the
framework’s performance despite data limitations that were
brought up in the above discussions. Like our work, most re-
cent studies on mapping invasive species in the Himalayan
region involve simultaneously surveying multiple invasive
species. In such instances, inductive transfer learning and
multi-task learning techniques can be applied to obtain clas-
sifiers (Pan and Yang 2009). Another direction is to con-
sider using bioclimatic variables frequently used in ecolog-
ical suitability models. One could even consider incorporat-
ing the output of ecological suitability models or mechanis-
tic growth models. This is in line with a recent body of work
on theory-guided machine learning (Karpatne et al. 2017;
Fox et al. 2019), which attempts to leverage scientific knowl-
edge for improving data-driven models. Understanding in-
vasive species spread is critical to environmental health and
social well-being. Our work demonstrates the feasibility of
Modern AI methods in effectively mapping invasive species
using remote sensing data, thus aiding in monitoring them
and curtailing their spread.
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Supplementary material: A Robust Deep Learning Model Reveals
the Spread of Multiple Invasive Plants in a Biodiversity Hotspot
using Satellite Imagery

Additional details for Framework

(a) P. hysterophorus: (1) dense (2) moderate and (3) low.

(b) L. camara: (1) dense (2) moderate and (3) low.

(c) C. odorata: (1) dense (2) moderate and (3) low.

Figure S1: Pictures of representative survey locations with the intensity of occurrence. Here, dense means a 10m × 10m
coverage or more, and low is 2m × 2m or less. This figure also reveals one of the challenges this variation in distribution
creates for training reliable models.

Table S1: Field survey data used in the experiments. It is to be noted that this is the subset of the total survey points that overlaps
with the imagery data. The first set corresponds to all such data points. These are further classified into points present in images
captured during spring and during autumn and winter.

All images Spring Winter
Species Total Presence Total Presence Total Presence

Chromolaena odorata 445 236 54 46 391 190
Lantana camara 661 366 70 2 591 364
Parthenium hysterophorus 383 186 96 60 287 126



Figure S2: The CHAL area and more than 50 images constitute our image dataset (before calibration).

Table S2: Satellite imagery dataset comprises 54 images covering approximately 1, 400km2 across nine locations.

Satellite Resolution Bands Panchrom.
WorldView-4 1.24m 4 0.31m
WorldView-3 1.24m 8 0.31m
WorldView-2 1.84m 8 0.46m
GeoEye-1 1.65m 4 0.41m

Study species. Chromolaena odorata, Lantana camara, and Parthenium hysterophorus are tropical plant species native to
central and south America, and now widespread in Africa, Asia, and Australia. They are among the most significant global
invasive alien plant species (Bajwa et al. 2016; Lowe et al. 2000; Muniappan, Reddy, and Lai 2005; Bhagwat et al. 2012)
and threaten natural ecosystems, agrosystems, and human health (Allan et al. 2018). P. hysterophorus is a short-lived annual,
diffused leafy herb germinating at any time of the year and growing rapidly to a height of 0.5–2.0m. It flowers almost year-
round, particularly from March to December. It was first recorded in Nepal in 1967 (Tiwari 2005). It inhabits a wide range of
habitats, typically including grazing lands, summer crops, disturbed and cultivated areas, roadsides, wastelands, cleared and
grazed pastures, river-banks, and open spaces in urban areas (Shrestha et al. 2019). C. odorata is a fast-growing perennial shrub
that reaches up to 2.5m, with flowering and fruiting occurring from December to April. It was first recorded in 1956. It forms
dense patches on roadsides, fallow lands, shrub-lands, agricultural lands, grasslands, tree plantations, and forests with low
foliage density and low canopy cover (Te Beest et al. 2012). L. camara was first recorded in Nepal in 1966 (Tiwari 2005). It is
an erect or suberect shrub up to 3m high and grows well on roadsides, fallow lands, shrub lands, pastures, and forest. It flowers
and fruits almost throughout the year. It is believed that many native species of grasses have disappeared after the introduction
of L. camara (Tiwari 2005). In tropical regions, it harbors pests that affect human health by providing shelter during the day for
tsetse flies which are vectors for African sleeping sickness (Mack and Smith 2011).

The shallow networks, denoted by M(ℓ, χ) comprise up to ℓ convolutional layers with a receptive field of size 3× 3 pixels,
followed by dense layers. The first convolution layer takes a patch as input, and with a convolution stride of 1 produces χ
feature maps or channels. We progressively double the depth of the feature map in the subsequent layers. For example, M(4, 8)
comprises four convolution layers with 8, 16, 32, and 64 channels for layers 1, 2, 3 and 4 respectively. The output of the final
convolutional layer is vectorized using a flattening layer so that the features can be fed to the dense layers. The final layer is
a dense layer with softmax function as the activation and outputs the likelihood of the presence of the IAPS. Since available
data for training is scarce, we run the risk of overfitting the training data. To avoid overfitting, we used batch-normalization and
dropout as a means of regularization. We also incorporated max-pooling layers, which downsamples the input features in the
spatial extent.



Image preprocessing and data preparation. The acquired satellite data consists of standard imagery, to which relative
radiometric correction has been applied. Considering that these images were acquired using multiple satellite sources and
at different times in the year, they must be calibrated so that they can be physically interpreted and comparable with each
other (Mather and Koch 2011; Liang 2005). We applied absolute radiometric correction and ortho-rectification. Finally, we
performed pansharpening by merging the given images with the corresponding spatially high-resolution panchromatic images.
For this, we used image-specific data from the XML files accompanying the images, gain-bias and solar illumination data
from the most current data sheet (Technologies 2020), and digital elevation model (Jarvis et al. 2008). Due to multiple satellite
sources, our images also vary in spatial resolution: 0.31m to 0.41m pixel length. We used the bivariate cubic spline interpolation
method to convert coarser images to 0.31m pixel length images. The data preparation process is fairly generic and allows for
easy addition of relevant information such as slope, temperature, humidity, etc., based on their availability for future work. In
order to ensure that adequate area is captured in a survey location to account for sparse coverage of the plant and inaccuracy of
the GPS device, we used a patch-based method for classification. A patch is a square window of size kw × kw pixels with the
given coordinates at the center, where we refer to kw as the patch (or window) size. We experimented with kw = 32, 64, 128, 256.
We considered four frequency bands: Near-Infrared (n), Red (r), Green (g), and Blue (b). To assess the importance of each
band, in our experiments, we considered different subsets of the four bands: nrgb, rgb, nrg, nrb, and ngb. Suppose nb is the
total number of considered bands (four for nrgb and three for the rest), then each feature vector corresponds to a kw × kw × nb

matrix, which we henceforth refer to as a patch. The data preparation process is fairly generic and allows for easy addition of
relevant information such as slope, temperature, humidity, etc., based on their availability for future work.

Implementation and computing environment. The entire framework was implemented using Python 3.7 (Van Rossum and
Drake 2009). The satellite image preprocessing was achieved using the Orfeo Toolbox (Grizonnet et al. 2017). The CNNs
were implemented using Keras (Chollet et al. 2015). Compute nodes with 2 x Intel(R) Xeon(R) Gold 6248 CPU @ 2.50GHz
processors with 20 cores per CPU; 386GB memory; and 4xNVIDIA Volta V100 GPUs with 32GB GPU memory using a Lustre
filesystem on a Mellanox MT27800 Family [ConnectX-5] infiniband backend network were used for training.
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Figure S3: The performance of Xception-P with increasing patch size.



Table S3: Average performance of classifiers for patch size 64 and nrgb bands across five different hold-out sets.

Train acc. Test
accuracy precision recall mean F1 score std. dev.

species model

C. odorata

M(2, 16) 0.705 0.697 0.692 0.732 0.705 0.0598
M(2, 4) 0.641 0.666 0.642 0.789 0.703 0.0354
M(4, 16) 0.742 0.726 0.731 0.737 0.725 0.0447
M(4, 4) 0.727 0.721 0.744 0.689 0.712 0.0466

InceptionV3 0.747 0.713 0.683 0.8 0.732 0.0587
InceptionV3-P 0.919 0.829 0.799 0.884 0.838 0.0288

VGG-16 0.587 0.5 0.5 1 0.667 0
VGG-16-P 0.797 0.755 0.725 0.832 0.771 0.0431
Xception 0.801 0.761 0.729 0.832 0.773 0.061

Xception-P 0.963 0.855 0.838 0.884 0.86 0.0303
RF 1 0.676 0.641 0.811 0.715 0.0289

L. camara

M(2, 16) 0.743 0.707 0.651 0.898 0.753 0.0155
M(2, 4) 0.722 0.678 0.618 0.917 0.739 0.0257
M(4, 16) 0.768 0.751 0.712 0.84 0.77 0.0137
M(4, 4) 0.754 0.71 0.664 0.852 0.744 0.00737

InceptionV3 0.804 0.713 0.678 0.843 0.745 0.0456
InceptionV3-P 0.863 0.788 0.768 0.828 0.795 0.0279

VGG-16 0.658 0.496 0.496 1 0.663 0
VGG-16-P 0.776 0.704 0.705 0.698 0.7 0.0182
Xception 0.836 0.808 0.806 0.822 0.809 0.0297

Xception-P 0.916 0.803 0.792 0.822 0.805 0.0271
RF 1 0.701 0.635 0.935 0.756 0.0133

P. hysterophorus

M(2, 16) 0.821 0.814 0.894 0.709 0.789 0.0276
M(2, 4) 0.803 0.796 0.895 0.664 0.762 0.0192
M(4, 16) 0.826 0.811 0.892 0.709 0.787 0.0258
M(4, 4) 0.819 0.814 0.91 0.697 0.786 0.0297

InceptionV3 0.837 0.839 0.855 0.817 0.835 0.0266
InceptionV3-P 0.907 0.814 0.826 0.789 0.807 0.0465

VGG-16 0.618 0.613 0.633 0.629 0.585 0.195
VGG-16-P 0.851 0.763 0.795 0.703 0.746 0.0608
Xception 0.842 0.828 0.827 0.829 0.825 0.027

Xception-P 0.909 0.817 0.842 0.793 0.81 0.00749
RF 0.994 0.758 0.777 0.714 0.744 0.0289
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Figure S4: Predicted distribution and survey locations for L. camara.
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Figure S5: Predicted distribution and survey locations for P. hysterophorus.
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Figure S6: The performance of InceptionV3-P and Xception-P for different band subsets.
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Figure S7: Hyperparameter tuning: The hyperparameters for the best models obtained through Bayesian optimization using
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