A Summary of IST 402 (Week 14)

• AI and Multiagent Systems for Social Good

• Big Question & Key Challenge

How can we optimize our limited intervention resources when we are interacting with other agents?

- Public Safety and Security
- \circ Conservation
- Public Health

• Optimizing Limited Intervention Resources

- Public Safety and Security
 - Game Theory for Security Resources Optimization
 - Real-world: US Coast Guard, US Federal Air Marshals Service
 - i.e. African Countries: Ghana, Uganda'
- Public Safety and Conservation
 - Security games and adversary
 - Green security games
 - Intelligent patrol patterns
 - Real-world: Parks
 - i.e. Zambia, Mozambique
 - Public Safety and Conservation
- Overall Research Process
 - Immersion \rightarrow data collection
 - **Predictive model** \rightarrow learning/expert input
 - **Prescriptive algorithm** \rightarrow game theory intervention
 - Field tests \rightarrow deployment
- Game Theory for Security Resource Optimization
 - Based on Stackelberg Security Game
 - Stackelberg Example: Defender commits to randomized strategy, adversary responds
 - shows a strategy and game can be as complex as you want
 - For simplicity, numbers are determined by surveillance, etc.
 - Optimization: Not 100% security (i.e defender would always win), increase cost/uncertainty to attackers
 - Can't guarantee 100% security due to limited resources
 - Real-World: ARMOR at LAX [2007], IRIS for Federal Air Marshals Service [2009]
- Why don't Countries use Machine Learning (ML)?
 - Simply do not have enough data
 - Countries do not have enough data as they don't face frequent breaches

Semester Recap

1. Key Takeaways

- a. AI has blossomed into one of the biggest fields in computer science
 - i. Led by AI and ML
 - ii. More data big data
 - iii. Better computing power

2. AI Trajectory: Valid Concerns

- a. People: Elon Musk, Bill Gates, Stephen Hawking
 - i. Fake news generator (recently been released)
- b. AI Chatbot that was discovered to be racist
- c. Facebook tagged two people as gorillas among AI discrimination issues
- d. AI Discrimination amongst employee hires
 - i. ... BUT ...
- e. Despite these issues, AI still has enormous potential to help underserved people
- f. Course has been exercise in making you believe in vision
- g. Numerous applications of how humanity can be helped through the use of AI

3. What cool techniques did we learn...?

- **a.** Train, validation, test (supervised learning)
 - i. Training set is a set of examples used for learning a model
 - ii. Validation set is a set of examples that cannot be used for learning the model but can help tune model parameters
 - 1. Need a validation set to figure out what parameters should be used in your model
 - 2. Helps control overfitting
 - iii. Test set is used to assess the performance of the final model and provide an estimation of the test error
 - 1. Results on the testing set are the only results that matter for final product
 - iv. NOTE: Never use the test set in any way to further tune the parameter or revise the model
- **b.** Decision Trees

4. Training and Testing

- a. Underfitting High bias
- **b.** Overfitting High variance
- **c.** Bias Variance Tradeoff

5. Evaluation Metrics

- a. Predicted labels
 - i. 2 options: Positive or Negative
 - ii. The predictive and the actual labels can be either positive or negative

6. Bagging

- a. More evolved version of a decision tree
 - i. Essentially create multiple decision trees
- b. After making all the decision trees, the decision that you will make will be the average of all the decision trees
- c. Use an average model as the final model

7. Prisoner's Dilemma

- a. Rational way of solving: it is always optimal to defect
- b. In rational play, both players will choose to defect

8. Nash Equilibrium

- a. It is suboptimal for each player to deviate from their strategies, if the other play continues to play the same strategy
 - i. Given they are at equilibrium
 - ii. Every finite game has a nash equilibrium

9. Stackelberg Game: Non-simultaneous moves

- a. One player is a defender They move first
 - i. Must commit to random strategy
- b. Other player is the adversary They move after the leader
 - i. Responds to random strategy
- c. Not 100% security optimizing chances based on limited resources

10. Deep Learning

- a. Neural Networks
- b. Backpropagation algorithm

- c. Different kinds of Neural Networks
 - i. Vanilla deep nets numeric data
 - ii. Convolutional neural networks (CNN) image data
 - iii. Generative adversarial nets (GAN) create data
 - iv. Recurrent neural nets (RNN) sequentially structured data (text, videos, etc.)

11. More than Accuracy...

- a. Interpretability Medical community
- b. Fairness COMPAS
- c. Ethics Self-driving cars
- d. Machine application for social good predicting childhood influenza