Shaun Campbell, Brennan McKendree, Nic Ammazzalorso, Andrew Takahashi

9/24/19

What's Wrong with AI and ML

- Legit issues
 - Have been tackled by ML researchers
 - Led to different emerging fields in these area
- Depending on your sources the issues you read might be different
 - Lot of noise in the news
 - Several illegitimate issues

Concern 1: AI is going to take away all our jobs

- case in point:
 - Manufacturing assembly lines
 - Past: Humans
 - Now/Future: Machines or AI
 - Car Assembly Lines
 - Cashiers at Fast Food/Grocery Stores
 - Communication for societies
 - Face to face -> telephones -> social media websites (WhatsApp, Facebook, etc.)
 - Taxis and Ubers
 - Truck Drivers Otto
 - Cleaning Services
 - Roomba
 - Marketing and Advertising
 - Ad exchanges
 - Robots to check inventory
 - Amazon Go
 - Stock Markets (NYSE, Nasdaq)
 - Call Center Operatives (IVRS systems)
- MarketWatch 2017
- Robots are going to take all our jobs in the next 10 or 20 years
- 1 million grounds and maintenance workers current
 - 50,000 after 20 years
- No proof of this statement yet

Concern 2: Artificial General Intelligence is Near

- We will build autonomous agents that operate much like being in the world
 - \circ $\;$ Lots of new that AGI is just around the corner

- Modern day AGI research is not doing well at all
- Mostly seems stuck on the same issues in reasoning and common sense that AI has had problem with for the past 50 years
- Case in Point: Self Driving Cars
 - Waymo acquired by Google in 2016
 - Self-driving cars are going to take at least 30-50 years for us to make it a reality
 - Lower bound on AGI, but even self-driving cars are going to take 30-50 years

Concern 3: The Singularity is Near

- 2029 is when we would be able to simulate the function of the entire brain
 - Millions of neurons cells, and billions of connections within these cells
- refers to a point where AI is better at AI research than humans
 - It will recursively improve itself
 - Will no longer be in control of human beings
- Current State:
 - Al systems trying to understand a 100 line C++ code
 - Unable to beat a freshman student who has just taken one month of programming lessons
- C Elegans
 - Nervous system of this worm has 302 neurons and 6000 connections in between these neurons
 - Over the past 30 years, people have been figuring out the entire wiring pattern of the 302 neurons
 - Modeling the neural system of C Elegans I still on going and not even halfway there

Concern 4: Misaligned Values of AI and ML

- What if you design an AI agent for making good coffee for you
 - It realizes it cannot fulfill its goal if it is turn off
 - Disable its off switch

Concern 5: Terminator robots are going to kill us

•

9/26/19

Issues with Deep Learning

• Can DL approach human level intelligence?

Is Deep Learning Approaching a Wall

• For most problems where deep learning has enabled transformationally better solutions (visons, speeches) we've entered diminishing returns territory in 2016-2017

What is Deep Learning Good At?

- Just a statistical technique
- Has a set of assumptions that it works with
- Performance is not good when these assumptions are not satisfied
- What?
 - Enough data (more an issue with deep learning, and less with standard ML)
 - Deep Learning can work with raw data
 - Standard ML models extract "important" features from this raw data
 - Usually happens using a hand-designed feature extractor
 - No bias in training data
 - DL models are just as likely to suffer against biased data
 - Computation power needs to be high for DL models
 - Data from the wild (real world) should be similar to your training data
 - Training data should be a good enough representation for the kind of data that you are likely to see in the real world
 - The distributions of your training and test data should be the same (or highly similar)

First Limit - Deep Learning is Data Hungry

- If you have training data -> DL works well
- Contrapositive of this statement
 - DL doesn't work well -> you don't have enough data
 - Data augmentations
 - Lots of example in AI for Social Good Domain
 - Collecting data of homeless youth social network to spread awareness about HIV
 - AI generated patrolling schedules to protect against terrorist attack on LAX -ARMOR program

- Test data should be similar to training data
- Interpolation
 - If test data is coming from the same distribution, your DL model should be able to interpolate between things that it has seen before
 - Not exactly the same but similar
- Extrapolation
 - If test data is not coming from the same distribution, DL model needs to extrapolate knowledge that it has currently learnt
 - When it is completely different, not seen before
- Important: No way to extrapolate

Second Limit - DL is Shallow

- Does not learn any hidden abstractions similar to human beings
 - These abstractions allow us to transfer knowledge
 - DL can't do that

Limit 3: No Way to Deal with Hierarchical Structure

- RNNs represents sentences as sequences of words
 - Ignore hierarchical structure
 - Longer sentences constructed recursively user small sub-sentences
- Example: The teenager <u>who previously crossed the Atlantic ocean</u> set a record for flying around the world
- Issue: No hierarchy among set of features, all of them are flat, we draw correlations among them
 - Hierarchical structures among feature are not represented inside DL
- As a result, use proxies for this hierarchy
 - E.g. sequence of words

Limit 4: Open Ended Inference

- Inference has been limited to Squad (Stanford Question Answer Database) type queries
- Given a question and a piece of text
 - Infer answer to question by reading text
 - Assumption: answer is present in text
- Thing that have not been done:
- Multi-hop inference
 - Locate answers by combining multiple pieces of text
 - Combine text with background knowledge
 - Open Ended Inference example: I think you need to mine your own business
 - Question: What is the mood of the person?
- Human beings can do this opened ended inference

• DL cannot

Limit 5: Lack of Transparency

- DL is a black box
- Millions or billions of weights
 - All you can get is the values of these learned weights
 - How to interpret them?
- Why is this even important? In what domains?
 - Viewpoint 1: Depends, if you are just looking for good results, don't need transparency, but if you are scientists working at Google who want to understand better, you need transparency
 - Depends on the domain where its being used, if it's being used people health, people livelihoods, then you need to understand why is a DL model making some prediction
 - Practitioners need to be able to trust the ML system that they are using
 - Who is accountable when a ML makes a mistake? The ML model goes scot-free but the doctor gets sued

Limit 6: Not Integrated with prior knowledge

- No domain knowledge is input
- Standard ML used feature extractors which were designed by human experts and contained human insights into the domain
- But you don't have human designed feature extractors in DL
- Useful properties of images, text, or whatever kind of data is being used is not present in the DL model
- One solid exception
 - CNNs

Limit 7: Unable to model causation

- Correlation does not imply causation
- DL system can learn correlations between height and vocabulary
- Will not be able to uncover causation between growth and development to both these variables

Limit 8: Assumption of Stationarity

- DL works well with stationary environments
- What if rules of the world continuously change?
 - What about stock prediction? Flu prediction?
- How is this related to extrapolation and difference in training testing data?

Limit 9: DL can easily be fooled