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ABSTRACT
During the COVID-19 pandemic, fair and efficient rationing of

healthcare resources has emerged as an important issue that has

been discussed by medical experts, policy-makers, and the general

public. We consider a healthcare rationing problem where medical

units are to be allocated to patients. Each unit is reserved for one of

several categories and the patients have different priorities for the

categories. We present an allocation rule that respects the priorities,

complies with the eligibility requirements, allocates the largest

feasible number of units, and does not incentivize agents to hide that

they qualify through a category. Moreover, the rule is polynomial-

time computable. To the best of our knowledge, it is the first known

rule with the aforementioned properties.

KEYWORDS
Matching, allocation under priorities, healthcare rationing, assign-

ment maximization

1 INTRODUCTION
The COVID-19 pandemic has emerged as one of the biggest chal-

lenges the world has faced. It has resulted in a frantic scientific race

to produce the most effective and safe vaccine to stem the devastat-

ing effects of the pandemic. Whereas there is encouraging initial

news on the creation of vaccines, there are still several scientific

challenges on how to distribute, allocate, and administer them in

an efficient and fair manner.

Since healthcare resources such as ventilators, antiviral treat-

ments, and vaccines can be scarce or costly, a fundamental question

that arises is who to prioritize when making allocation decisions.

For example, three important priority groups that are highlighted

by medical practitioners and policy-makers are (1) health care work-

ers; (2) other essential workers and people in high-transmission

settings; (3) and people with medical vulnerabilities associated with

poorer COVID-19 outcomes [39, 45]. Other concerns that have been

discussed include racial equity [16].

When healthcare resources need to be allocated, it is not enough

to identify priority groups. There is also a need to algorithmi-

cally and transparently make these prioritized allocations deci-

sions [22, 46]. In a New York Times article, the issue has been

referred to as the one of the hardest decisions, health organizations

need to make [23]. Since the decisions need to be justified to the

public, they must be aligned with the ethical guidelines such as

respecting priorities of various categories. These decisions are not

straightforward, especially when a patient is eligible for more than

one category. When patients are eligible for multiple categories, the

decision on which category is used can have compounding effects
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on what categories other agents can use. A fundamental question

that arises is the following one:

How do we allocate scarce medical resources fairly and
efficiently while taking into account various ethical
principles and priority groups?

The question is not just fundamental but the solution to the

problem is time–critical as various states, city councils, and mu-

nicipalities start to roll out vaccines using their particular ethical

guidelines. The problem of health care rationing has recently been

formally studied bymarket designers. Pathak et al. [38] were among

the first to frame the problem as a two-sided matching problem

in which patients are on one side and the resources units are on

the other side. By doing so, they linked the healthcare rationing

problem with the rich field of two-sided matching [41].

Pathak et al. suggested dividing the units into different reserve

categories, each with its own priority ranking of the patients. The

categories and the category-specific priorities represent the ethical

principles and guidelines that a policy-maker may wish to imple-

ment.
1
For example, a category for senior people may have an

age-specific priority ranking that puts the eldest citizens first. Hav-

ing a holistic framework that considers different types of priorities

has been termed important in healthcare rationing.
2
The approach

of Pathak et al. has been recommended or adopted by various orga-

nizations including the NASEM (National Academies of Sciences,

Engineering, and Medicine) Framework for Equitable Vaccine Allo-

cation [37] and has been endorsed in medical circles [39, 43]. The

approach has been covered widely in the media, including the New

York Times and the Washington Post.
3

For their two-sided matching formulation, Pathak et al. [38]

proposed a solution for the problem. One of their key insights

was that running the Deferred Acceptance algorithm [24, 40] on

the underlying problem satisfies basic relevant axioms (eligibility

compliance, respect of priorities, and non-wastefulness). They also

showed when all the category priorities are consistent with a global

baseline priority, then there is a smart reserves algorithm that com-

putes a maximum size matching satisfying the basic axioms. The

smart reserves approach makes careful decisions about which cat-

egory should be availed by which patient. However, the problem

of such a smart reserves approach for the general problem with

general heterogeneous priorities has not been addressed in the liter-

ature. In this paper, we set out to address this issue and answer the

following research problem.

1
See for example, the book by Bognar and Hirose [14] on the ethics of healthcare

rationing that discusses many of these principles.

2
In a report issued by the Deeble Institute for Health Policy Research, Martin [36]

writes that “To establish robust healthcare rationing in Australia, decision-makers

need to acknowledge the various implicit and explicit priorities that influence the

process and develop a decision-making tool that incorporates them.”

3
https://www.covid19reservesystem.org/media

https://www.covid19reservesystem.org/media
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For the general healthcare rationing problem with het-
erogeneous priorities, how do we allocate resources in a
fair, economically efficient, strategyproof, and compu-
tationally tractable way?

Contribution. For the general healthcare rationing problem, we

first highlight that naively ascribing strict preferences over the

categories to the agents can have adverse effects on the efficiency

of the outcome when patients are eligible for multiple categories. If

the eligibility requirements are treated as hard constraints, it leads

to inefficient allocation of resources. If the eligibility requirements

are treated as soft constraints, then the outcome does not allocate

the resources optimally to the highest priority patients, thereby

undermining important healthcare guidelines and ethical principles.

We address the problem posed by Pathak et al. [38], that of

finding a maximum beneficiary assignment that respects priorities

and other desirable axioms. Our main contribution is presenting

an allocation rule that

(1) complies with the eligibility requirements,

(2) respects the priorities of the categories (for each category,

patients of higher priority are served first),

(3) is non-wasteful (there is no unit that is unused but could be

used by some eligible patient),

(4) yields a maximal beneficiary allocation (allocates the largest

feasible number of units to patients who are eligible for the

categories pertaining to the units),

(5) is strategyproof (does not incentivize agents to under-report

the categories they qualify for) if the priorities are strict,

(6) is monotonic in the quotas (selected agents remain selected

if the category quotas weakly increase), and

(7) is strongly polynomial-time computable.

Our algorithm also immediately applies to the school choice prob-

lem in which students are only interested in being matched with

one of their acceptable schools. It also applies to hiring settings in

which applicants are interested in one of the positions and each of

the departments has its own priorities. Finally, it applies to many

other rationing scenarios such as allocation of limited slots at public

events or visas to immigration applicants.

2 RELATEDWORK
The paper is related to an active area of research on matching

with distributional constraints [see, e.g., 32]. One general class of

distributional constraints that have been examined in matching

market design pertains to common quotas over institutions such as

hospitals [12, 26, 30, 31].

Within the umbrella of work on matching with distributional

constraints, particularly relevant to healthcare rationing is the lit-

erature on school choice with diversity constraints [8, 9, 11, 18–

21, 25, 28, 35]. Categories in healthcare rationing correspond to

affirmative action types in school choice. For a brief survey, we

suggest the book chapter by Heo [29]. Except for the special case in

which students have exactly one type [21], most of the approaches

do not achieve diversity goals optimally whereas in the healthcare

rationing problem that we focus on, our goal is to find match-

ings that are maximal in terms of beneficiary assignment. Ahmed

et al. [6], Dickerson et al. [17], and Ahmadi et al. [5] consider opti-

mization approaches for diverse matchings but their objective and

models are different.

Pathak et al. [38] were the first to frame a rationing problem

with category priorities as a two-sided matching problem in which

agents are simply interested in a unit of resource and the resources

are reserved for different categories. They show that artificially

enforcing strict preferences of the agents over the categories and

running the deferred acceptance algorithm results in desirable out-

comes for the rationing problem. They note, however, that this

approach may lead to matchings that are not Pareto optimal. They

then proposed to use the smart reserves approach of Sönmez and

Yenmez [44] for the restricted problem when all the preferential

categories have consistent priorities. Our results can be viewed as

simultaneously achieving the key properties of the two approaches

of Pathak et al.. Firstly, we propose a new algorithm that achieves

the same key properties for heterogeneous priorities as the smart re-

serves algorithm of Sönmez and Yenmez [44] and Pathak et al. [38]

for homogeneous priorities. Secondly, our algorithm has an impor-

tant advantage over the Deferred Acceptance formulation of Pathak

et al. [38] for the case of heterogeneous priorities as our approach

additionally achieves the important property of maximality in ben-

eficiary assignment. In followup work, Grigoryan [27] considers

optimization approaches for variants of the problem but does not

present any polynomial-time algorithm or consider incentive issues.

In contrast to the papers on healthcare rationing discussed above,

we also consider strategyproofness and monotonicity aspects and

show that our rule complies with them.

In this paper, we attempt to compute what are essentially maxi-

mum size stable matchings. The problem of computing such match-

ings is NP-hard if both sides have strict preferences/priorities [13].

In our problem, the agents essentially have dichotomous prefer-

ences (categories they are/are not eligible for) and, hence, we are

able to obtain a polynomial-time algorithm for the problem.

Furthermore, our algorithm is strategyproof if the priorities are

strict. In contrast, for other two-sided matching settings, it is known

that maximizing the number of matched individuals results in in-

centive and fairness impossibilities [see, e.g., 4, 33]. Computing

outcomes that match as many agents as possible, has also been

examined in related but different contexts [see, e.g., 3, 7, 10, 15].

3 MODEL
We adopt the essential features of the healthcare rationing model of

Pathak et al. [38] with one generalization: we allow the categories’

priorities over agents to be weak rather than strict. There are 𝑞

identical and indivisible units of some resource, which are to be

allocated to the agents in a set 𝑁 with |𝑁 | = 𝑛. Each category 𝑐

has a quota 𝑞𝑐 ∈ N with

∑
𝑐∈𝐶 𝑞𝑐 = 𝑞 and a priority ranking ≿𝑐 ,

which is a preorder on 𝑁 ∪ {∅}. An agent 𝑖 is eligible for category

𝑐 if 𝑖 ≻𝑐 ∅. We say that 𝐼 = (𝑁,𝐶, (≿𝑐 ), (𝑞𝑐 )) is an instance (of the

rationing problem). (For convenience, we will write (≿𝑐 ) and (𝑞𝑐 )
for the profile of priorities and quotas in the sequel.)

A matching 𝜇 : 𝑁 → 𝐶 ∪ {∅} is a function that maps each agent

to a category or to ∅ and satisfies the capacity constraints: for each

𝑐 ∈ 𝐶 , |𝜇−1 (𝑐) | ≤ 𝑞𝑐 . For an agent 𝑖 ∈ 𝑁 , 𝜇 (𝑖) = ∅ means that 𝑖 is

unmatched (that is, does not receive any unit) and 𝜇 (𝑖) = 𝑐 means
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that 𝑖 receives a unit reserved for category 𝑐 . When convenient,

we will identify a matching 𝜇 with the set of agent-category pairs

{{𝑖, 𝜇 (𝑖)} : 𝜇 (𝑖) ≠ ∅}.4
We introduce four axioms that are natural in the context of

allocating medical units and well-grounded in practice. For further

motivation of these axioms, we recommend the detailed discussions

by Pathak et al. [38].

The first axiomwe consider requires that matchings comply with

eligibility requirements. It specifies that a patient should only take

a unit of a category for which the patient is eligible. For example,

a young person should not take a unit from the units reserved for

elderly people.

Definition 3.1 (Compliance with eligibility requirements). A
matching 𝜇 complies with eligibility requirements if for any 𝑖 ∈ 𝑁
and 𝑐 ∈ 𝐶 , 𝜇 (𝑖) = 𝑐 =⇒ 𝑖 ≻𝑐 ∅.

The second axiom concerns the respect of priorities of categories.

It rules out that a patient is matched to a unit of some category 𝑐

while some other agent with a higher priority for 𝑐 is unmatched.

Definition 3.2 (Respect of priorities). A matching 𝜇 respects priori-
ties if for any 𝑖, 𝑗 ∈ 𝑁 and 𝑐 ∈ 𝐶 , 𝜇 (𝑖) = 𝑐 and 𝜇 ( 𝑗) = ∅ =⇒ 𝑗 ⊁𝑐 𝑖 .

An astute reader who is familiar with the theory of stable match-

ings will immediately realize that the axiom “respect of priorities” is

equivalent to justified envy-freeness in the context of school-choice

matchings [2].

Next, non-wastefulness requires that if an agent is unmatched

despite being eligible for a category, then all units reserved for that

category are matched to other agents.

Definition 3.3 (Non-wastefulness). A matching 𝜇 is non-wasteful
if for any 𝑖 ∈ 𝑁 and 𝑐 ∈ 𝐶 , 𝑖 ≻𝑐 ∅ and 𝜇 (𝑖) = ∅ =⇒ |𝜇−1 (𝑐) | = 𝑞𝑐 .

Not all non-wasteful matchings allocate the same number of

units. In particular, some may not allocate as many units as pos-

sible. A stronger efficiency notion prescribes that the number of

allocated units is maximal subject to compliance with the eligibility

requirements.

Definition 3.4 (Maximal beneficiary assignment). A matching 𝜇

is a maximal beneficiary assignment if it has maximum size among

all matchings complying with eligibility requirements.

These four axioms capture the first guideline put forth in the

report by the National Academies of Sciences, Engineering, and

Medicine: “ensure that allocation maximizes benefit to patients,

mitigates inequities and disparities, and adheres to ethical princi-

ples” [37, page 69]

The following example illustrates the definitions above.

Example 3.5. Suppose there are three agents and two categories

with one reserved unit each.

𝑁 = {1, 2, 3}, 𝐶 = {𝑐1, 𝑐2}, 𝑞𝑐1 = 1, 𝑞𝑐2 = 1.

The priority ranking of 𝑐1 is 2 ≻𝑐1 3 ≻𝑐1 ∅ ≻𝑐1 1 and the priority

ranking of 𝑐2 is 2 ≻𝑐2 ∅ ≻𝑐2 1 ≻𝑐2 3. Figure 1 illustrates this instance
of the rationing problem.

4
In graph theoretic terms, 𝜇 is a𝑏-matching becausemultiple edges in 𝜇 can be adjacent

to a category 𝑐 .

1

2

3

𝑐1

𝑐2

𝑞𝑐2=1

2 ≻𝑐1 3 ≻𝑐1 ∅ ≻𝑐1 1

𝑞𝑐1=1

2 ≻𝑐2 ∅ ≻𝑐2 1 ≻𝑐2 3

Figure 1: The problem instance described in Example 3.5. A
dotted line between an agent and a category indicates that
the agent is eligible for the category.

Note that agent 1 is not eligible for any category, agent 2 is

eligible for 𝑐1 and 𝑐2, and agent 3 is eligible only for 𝑐1. Thus, the

following matchings comply with the eligibility requirements.

𝜇1 = ∅ 𝜇2 = {{2, 𝑐1}} 𝜇3 = {{2, 𝑐2}}
𝜇4 = {{3, 𝑐1}} 𝜇5 = {{2, 𝑐2}, {3, 𝑐1}}

All of these matchings except for 𝜇4 respect priorities. Only 𝜇2
and 𝜇5 are non-wasteful. The only matching that is a maximal

beneficiary assignment is 𝜇5.

We are interested in allocation rules, which, for each instance,

return a matching.

Definition 3.6 (Allocation rule). An allocation rule maps every

instance 𝐼 to a matching for 𝐼 .

We say that an allocation rule 𝑓 satisfies one of the axioms in

Definitions 3.1 to 3.4 if 𝑓 (𝐼 ) satisfies the axiom for all instances 𝐼 .

Moreover, we define a notion of strategyproofness for allocation

rules. Note that all units are identical and agents have no preferences

over the category of the unit they receive However, they may have

an incentive to hide being eligible for a category, or, more generally,

to aim for a lower priority for some category.
5

Formalizing strategyproofness requires the following definition.

Let (≿𝑐 ) and (≿′𝑐 ) be priority profiles and 𝑖 ∈ 𝑁 . We say agent 𝑖’s

priority decreases from (≿𝑐 ) to (≿′𝑐 ) if for all 𝑗, 𝑘 ≠ 𝑖 and 𝑐 ∈ 𝐶 ,
𝑗 ≿𝑐 𝑘 ←→ 𝑗 ≿′𝑐 𝑘

𝑗 ≿𝑐 𝑖 −→ 𝑗 ≿′𝑐 𝑖 and 𝑗 ≻𝑐 𝑖 −→ 𝑗 ≻′𝑐 𝑖
That is, the priority rankings over agents other than 𝑖 are the same

in both profiles and 𝑖 can only move down in the priority rankings

from (≿𝑐 ) to (≿′𝑐 ). We also say that 𝑖’s priority decreases from

𝐼 = (𝑁,𝐶, (≿𝑐 ), (𝑞𝑐 )) to 𝐼 ′ = (𝑁,𝐶, (≿′𝑐 ), (𝑞𝑐 )). Strategyproofness
requires that if 𝑖 is unmatched for 𝐼 , then 𝑖 is also unmatched for 𝐼 ′.

5
In the context of school choice, lowering oneself in the priority ranking of a school is

akin to students deliberately underperforming in an entrance exam.
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Definition 3.7 (Strategyproofness). An allocation rule 𝑓 is strat-

egyproof if 𝑓 (𝐼 ) (𝑖) = ∅ implies 𝑓 (𝐼 ′) (𝑖) = ∅ whenever 𝑖’s priority
decreases from 𝐼 to 𝐼 ′.

In particular, with a strategyproof allocation rule, agents cannot

benefit from hiding that they are eligible for a category.
6

Finally, we define a monotonicity axiom that requires that

matched agents remain matched if the categories’ quotas weakly

increase.

Definition 3.8 (Monotonicity in quotas). An allocation rule 𝑓 is

monotonic in quotas if for any two instances 𝐼 and 𝐼 ′ with quotas

(𝑞𝑐 ) and (𝑞′𝑐 ) so that 𝑞𝑐 ≤ 𝑞′𝑐 for all 𝑐 ∈ 𝐶 , every agent who is

matched in 𝑓 (𝐼 ) is also matched in 𝑓 (𝐼 ′).

4 ISSUES WITH BREAKING TIES AND
APPLYING DEFERRED ACCEPTANCE

The approach of Pathak et al. (2020) is to frame the healthcare

rationing problem as a two-sided matching problem. They showed

that if one artificially introduces (strict) preferences for the agents

over the categories they are eligible for and applies the Deferred

Acceptance algorithm, the resulting matching complies with the

eligibility requirements, respects priorities, and is non-wasteful [38,

Theorem 2]. They state the algorithmic implications of their result.

“Not only is this result a second characterization of
matchings that satisfy our three basic axioms, it also
provides a concrete procedure to calculate all such
matchings.”

Although considering all possible artificial preferences and run-

ning Deferred Acceptance gives us all the matchings satisfying the

three axioms, it is computationally expensive to consider |𝐶 |! |𝑁 |
different preference profiles.

Not every preference profile leads to a compelling outcome even

if the categories have strict priorities. For example, many prefer-

ence profiles lead to matchings that are not maximal beneficiary

assignments. The next example highlights this issue.
7

Example 4.1. Consider the instance in Example 3.5. Suppose we

run the Deferred Acceptance algorithm assuming all agents prefer

𝑐1 to 𝑐2 to 𝑐3. Assuming agents can only be matched to categories

they are eligible for (compliance with eligibility requirements), the

resulting matching is 𝜇2 = {{2, 𝑐1}}. This matching is however

not the most efficient use of the resources because it is possible to

allocate all units while still satisfying the axioms in Definitions 3.1

to 3.3: 𝜇5 = {{3, 𝑐1}, {2, 𝑐2}}.

Hence, artificially inducing preferences of agents and running

Deferred Acceptance can lead to inefficient allocations. Even if

we ignore computational concerns and can assign preferences to

agents so that the matching selected by Deferred Acceptance is of

maximum size and respects priorities, it is not clear whether such

a rule satisfies strategyproofness and monotonicity properties like

the ones we introduced above. We propose a rule that circumvents

both issues.

6
This restricted version of strategyproofness under which agents do not have an in-

centive to hide their eligible categories, has been referred to as incentive-compatibility

by Aygün and Bó [8].

7
The issue is also evident from the discussion by Pathak et al. [38] where they point out

that sequential treatment of categories may not give a maximal beneficiary assignment.

1

2

3

𝑐1

𝑐2
1 + 2𝜖 + 𝜖

4

1 + 2𝜖 + 𝜖
4

1 + 𝜖 + 𝜖
8

𝑞𝑐1=1

𝑞𝑐2=1

Figure 2: The reservation graph 𝐺𝜋
𝐼
for the instance 𝐼 in Ex-

ample 3.5. The dotted lines correspond to edges in 𝐸. The
numbers close to the edges are their weights according to𝑤 .

5 THE ALLOCATION RULE
Our allocation rule is based on an arbitrary permutation 𝜋 of the

agents called a baseline ordering. The baseline ordering could be

based on some global scale that measures the need for treatment.

For an agent 𝑖 , 𝜋 (𝑖) is interpreted as the position of 𝑖 in the baseline

ordering. Given an instance 𝐼 = (𝑁,𝐶, (≿𝑐 ), (𝑞𝑐 )), we construct the
corresponding reservation graph 𝐺𝜋

𝐼
= (𝑁 ∪𝐶, 𝐸,𝑤, (𝑞𝑐 )), which is

a bipartite, weighted graph. The two independent vertex sets are

𝑁 and 𝐶 and the edge set 𝐸 consists of all agent-category pairs so

that the agent is eligible for the category.

𝐸 = {{𝑖, 𝑐} : 𝑖 ∈ 𝑁, 𝑐 ∈ 𝐶, 𝑖 ≻𝑐 ∅}
The weight of an edge {𝑖, 𝑐} ∈ 𝐸 is

𝑤 ({𝑖, 𝑐}) = 1 +𝑤𝑐 ({𝑖, 𝑐}) +𝑤𝜋 ({𝑖, 𝑐})
where

(1) 𝑤𝑐 ({𝑖, 𝑐}) = (𝑛 − ℓ)𝜖 if 𝑖 is in the ℓth most-preferred equiva-

lence class in 𝑐’s priority ranking, and

(2) 𝑤𝜋 ({𝑖, 𝑐}) = 𝜖

2
𝜋 (𝑖 ) ,

for some 𝜖 < 1

𝑛2
. The reservation graph for the instance in Exam-

ple 3.5 is depicted in Figure 2 where the baseline ordering is chosen

as 123.

We say that a subset of edges𝑀 is amatching of𝐺𝜋
𝐼
if each 𝑖 ∈ 𝑁

is adjacent to at most one edge in 𝑀 and each 𝑐 ∈ 𝐶 is adjacent

to at most 𝑞𝑐 edges in 𝑀 . Hence, each matching 𝜇 of 𝐼 induces a

matching𝑀𝜇 = {{𝑖, 𝑐} ∈ 𝐸 : 𝜇 (𝑖) = 𝑐} of𝐺𝜋
𝐼
and vice versa. We will

not distinguish between 𝜇 and𝑀𝜇 in the sequel.

The intuition behind the edge weights is as follows. We want

to find a maximum size matching of 𝐺𝜋
𝐼
. Among the maximum

size matchings, we want to restrict attention to those that respect

priorities. Finally, among the latter set of matchings, we want to

prioritize the agents who are ranked early in the baseline ordering

𝜋 (to achieve strategyproofness and monotonicity). This can be

done as follows. We first care about whether a category finds an

agent acceptable, in which case there is an edge with weight at least
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1. Secondly, we give additional weight if an agent is high in the

priority ranking of the category. Finally, matching agents who come

early in the baseline ordering gives more weight than matching

agents who come late. By the choice of 𝜖 , the weight a matching can

obtain through𝑤𝑐 and𝑤𝜋 is always less than 1. Hence, ordering

matchings by weight refines the order induced by size. Similarly,

𝑤𝜋 is chosen so that the sum of weights a matching can get through

𝑤𝜋 is less than 𝜖 (which is smallest possible non-zero difference in

the weight of any two matchings according to𝑤𝑐 ). Thus, matching

agents to categories for which they have high priority is prioritized

over matching agents who come early in the baseline ordering.

Consider an allocation rule that chooses amaximal weightmatch-

ing of 𝐺𝜋
𝐼
for every instance 𝐼 (with 𝜋 fixed). The following three

lemmas show that any such allocation rule satisfies all of the ax-
ioms defined above. By construction of the reservation graph, each

maximal weight matching complies with the eligibility require-

ments, is a maximum size matching, and respects priorities. We

verify these facts in Lemma 5.1. Lemma 5.2 and Lemma 5.3 show

that the above allocation rules are strategyproof (if priorities are

strict) and monotonic, with the former taking up the bulk of the

work.

Lemma 5.1. Every maximal weight matching of 𝐺𝜋
𝐼

(1) complies with acceptability requirements,
(2) is of maximum size among feasible matchings,
(3) respects priorities, and
(4) matches the same set of agents.

Proof. Let 𝜇 be a maximal weight matching of 𝐺𝜋
𝐼
.

(1) If {𝑖, 𝑐} is an edge in 𝐺𝜋
𝐼
, then 𝑖 ≻𝑐 ∅. Hence, any matching

of 𝐺𝜋
𝐼
complies with the acceptability requirements. In particular,

𝜇 does.

(2) For any edge 𝑒 ∈ 𝐸,

𝑤 (𝑒) ≤ 1 + (𝑛 − 1)𝜖 + 𝜖

2

< 1 + 1

𝑛

since 𝜖 < 1

𝑛2
(recall the definition of 𝑤𝑐 and 𝑤𝜋 ). Hence, 𝑤 (𝑒) ∈

[1, 1 + 1

𝑛 ). Moreover, every matching 𝜇 ′ of 𝐺𝜋
𝐼
has cardinality at

most 𝑛 as |𝜇 ′ | ≤ 𝑛 = |𝑁 | since every agent can be matched to at

most one category. Hence, 𝑤 (𝜇 ′) = ∑
𝑒∈𝜇′ 𝑤 (𝑒) ∈ [|𝜇 ′ |, |𝜇 ′ | + 1).

So 𝑤 (𝜇) ≥ 𝑤 (𝜇 ′) implies |𝜇 | ≥ |𝜇 ′ |. Hence, 𝜇 is a maximal size

matching (and, thus, also non-wasteful).

(3) If 𝜇 does not respect priorities, there exist 𝑖, 𝑗 ∈ 𝑁 and 𝑐 ∈ 𝐶
so that 𝜇 (𝑖) = 𝑐 , 𝜇 ( 𝑗) = ∅, and 𝑗 ≻𝑐 𝑖 . In particular, 𝑙 𝑗 ≤ 𝑙𝑖 − 1,

where 𝑙 𝑗 is the rank of 𝑗 ’s equivalence class in the priority ranking

of 𝑐 (and similarly for 𝑖). Then

𝑤 ({ 𝑗, 𝑐}) = 1 + (𝑛 − 𝑙 𝑗 )𝜖 +
𝜖

2
𝜋 ( 𝑗)

> 1 + (𝑛 − 𝑙 𝑗 − 1)𝜖 + 𝜖

≥ 1 + (𝑛 − 𝑙𝑖 )𝜖 +
𝜖

2
𝜋 (𝑖) = 𝑤 ({𝑖, 𝑐})

It follows that 𝜇 ′ = 𝜇 − ({{𝑖, 𝑐}} ∪ {{ 𝑗, 𝑐}} is a matching of𝐺𝜋
𝐼
with

𝑤 (𝜇 ′) > 𝑤 (𝜇). Since this contradicts that 𝜇 has maximal weight, 𝜇

has to respect priorities.

(4) We show that, more generally, any two matchings 𝜇 and

𝜇 ′ of 𝐺𝜋
𝐼
with 𝑤 (𝜇) = 𝑤 (𝜇 ′) match the same set of agents. In

the proof of (2), we have observed that 𝑤 (𝜇) ∈ [|𝜇 |, |𝜇 | + 1) and
𝑤 (𝜇 ′) ∈ [|𝜇 ′ |, |𝜇 ′ | + 1). So the fact that 𝑤 (𝜇) = 𝑤 (𝜇 ′) implies

|𝜇 | = |𝜇 ′ |. Recalling that𝑤 (𝜇) = |𝜇 | +𝑤𝑐 (𝜇) +𝑤𝜋 (𝜇) (and similarly

for 𝜇 ′) gives

𝑤𝑐 (𝜇) +𝑤𝜋 (𝜇) = 𝑤𝑐 (𝜇 ′) +𝑤𝜋 (𝜇 ′) (1)

Now 𝑤𝑐 (𝜇) and 𝑤𝑐 (𝜇 ′) are integer multiples of 𝜖 and 𝑤𝜋 (𝜇) < 𝜖

and𝑤𝜋 (𝜇 ′) < 𝜖 . It follows from (1) that

𝑤𝜋 (𝜇) = 𝑤𝜋 (𝜇 ′) (2)

Inserting the definition of𝑤𝜋 gives∑
{𝑖,𝑐 }∈𝜇

𝜖

2
𝜋 (𝑖) =

∑
{𝑖,𝑐 }∈𝜇′

𝜖

2
𝜋 (𝑖)

This equality holds if and only if {𝑖 ∈ 𝑁 : 𝜇 (𝑖) ∈ 𝐶} = {𝑖 ∈
𝑁 : 𝜇 ′(𝑖) ∈ 𝐶}. That is, if 𝜇 and 𝜇 ′ match the same set of agents. □

The proof of Lemma 5.2 will use some graph-theoretical ter-

minology. Let 𝑎0, . . . , 𝑎𝑚 be a sequence of vertices in 𝐺𝜋
𝐼
. If 𝑃 =

{{𝑎𝑙−1, 𝑎𝑙 } : 𝑙 ∈ {1, . . . ,𝑚}} ⊂ 𝐸, we call 𝑃 a path in 𝐺𝜋
𝐼
. The

length of 𝑃 is |𝑃 | and 𝑎0 and 𝑎𝑚 are the initial and terminal ver-

tex of 𝑃 . If 𝜇 is a matching of 𝐺𝜋
𝐼
, 𝑃 is an alternating path for 𝜇

if {𝑎𝑖−1, 𝑎𝑖 } ∈ 𝜇 if and only if 𝑖 is even and either 𝑎0 ∈ 𝑁 and

𝑎0 is unmatched in 𝜇 or 𝑎0 ∈ 𝐶 and |𝜇−1 (𝑎0) | < 𝑞𝑐 . If, moreover,∑
𝑒∈𝑃\𝜇 𝑤 (𝑒) >

∑
𝑒∈𝑃∩𝜇 𝑤 (𝑒), 𝑃 is an augmenting path for 𝜇 in𝐺𝜋

𝐼
.

Lemma 5.2. Let 𝑖 ∈ 𝑁 and 𝐼 and 𝐼 ′ be instances with strict priorities
so that 𝑖’s priority decreases from 𝐼 to 𝐼 ′. If 𝑖 is unmatched in some

maximal weight matching of𝐺𝜋
𝐼
, then 𝑖 is unmatched in all maximal

weight matchings of 𝐺𝜋
𝐼 ′ .

Proof. Let 𝐺𝜋
𝐼

= (𝑁 ∪ 𝐶, 𝐸,𝑤, (𝑞𝑐 )) and 𝐺𝜋
𝐼 ′ = (𝑁 ∪

𝐶, 𝐸 ′,𝑤 ′, (𝑞𝑐 )). We make some simplifying assumptions first. It

suffices to consider the case that 𝑖’s priority for only one category

decreases from 𝐼 to 𝐼 ′. That is, there is 𝑑 ∈ 𝐶 so that ≿𝑐 = ≿′𝑐 for all
𝑐 ≠ 𝑑 . Moreover, we may assume that there is exactly one agent 𝑖 ′

with 𝑖 ≻𝑑 𝑖 ′ and 𝑖 ′ ≻′
𝑑
𝑖 . Repeated application of these cases yield

the general statement.

Let 𝜇 and 𝜇 ′ be maximal weight matchings of 𝐺𝜋
𝐼
and 𝐺𝜋

𝐼 ′ , re-

spectively. Assume for contradiction that 𝜇 (𝑖) = ∅ and 𝜇 ′(𝑖) ≠ ∅.
Note that 𝜇 (𝑖 ′) ≠ 𝑑 since 𝑖 ≻𝑑 𝑖 ′ and 𝜇 respects priorities by

Lemma 5.1(3).

Claim 1. 𝜇 and 𝜇 ′ match the same number of agents (|𝜇 | = |𝜇 ′ |).

Proof. It follows from the definition of the reservation graph

that either 𝐸 = 𝐸 ′ (if 𝑖 ≻′
𝑑
∅) or 𝐸 = 𝐸 ′ ∪ {{𝑖, 𝑑}} (if ∅ ≻𝑑 𝑖). In

particular, 𝐸 ′ ⊂ 𝐸 so that 𝜇 ′ is also a matching of 𝐺𝜋
𝐼
. Since 𝜇 is a

maximalweightmatching of𝐺𝜋
𝐼
, it follows from Lemma 5.1(2) that 𝜇

is a maximal size matching of𝐺𝜋
𝐼
. Hence, |𝜇 | ≥ |𝜇 ′ |. Similarly, since

𝜇 (𝑖) = ∅, 𝜇 is also a matching of 𝐺𝜋
𝐼 ′ . Since 𝜇

′
is a maximal weight

matching of 𝐺𝜋
𝐼 ′ , we conclude |𝜇

′ | ≥ |𝜇 |. Together, |𝜇 | = |𝜇 ′ |. □

Figure 3 depicts the situation we reason about in the remainder

in the proof.

Claim 2. There is an augmenting path for 𝜇 in 𝐺𝜋
𝐼 ′ that alternates

between edges in 𝜇 ′ and edges in 𝜇 with initial vertex 𝑖 and an

agent who is unmatched in 𝜇 ′ as terminal vertex. That is, there is a
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path 𝑃 = 𝑃𝜇′ ∪ 𝑃𝜇 with

𝑃𝜇′ = {{ 𝑗𝑠−1, 𝑐𝑠 } : 𝑠 ∈ {1, . . . , 𝑛}} ⊂ 𝜇 ′ − 𝜇
𝑃𝜇 = {{ 𝑗𝑠 , 𝑐𝑠 } : 𝑠 ∈ {1, . . . , 𝑛}} ⊂ 𝜇 − 𝜇 ′

𝑗0 = 𝑖 and 𝜇 ′( 𝑗𝑛) = ∅
the 𝑗𝑠 are pairwise distinct

𝑤 ′(𝑃𝜇′) > 𝑤 ′(𝑃𝜇 )

Proof. Since 𝑖 is matched in 𝜇 ′ and unmatched in 𝜇 (𝜇 ′(𝑖) ≠ ∅
and 𝜇 (𝑖) = ∅), there is a path 𝑃 = 𝑃𝜇′ ∪ 𝑃𝜇 in 𝐺𝜋

𝐼 ′ that alternates

between edges in 𝜇 ′ and 𝜇 and starts at 𝑖 . (𝑃𝜇′ = {𝑖, 𝜇 ′(𝑖)} and 𝑃𝜇 = ∅
is one such path.) Assume that 𝑃 is ofmaximal length among all such

path starting at 𝑖 . By Claim 1 and Lemma 5.1(2), 𝜇 is a maximal size

matching of 𝐺𝜋
𝐼 ′ . Hence, 𝑃 has even length (otherwise alternating

along 𝑃 would yield a matching of larger size than 𝜇, namely the

matching 𝜇−𝑃𝜇 ∪𝑃𝜇′ ). We conclude that 𝑃 is induced by a sequence

𝑖 = 𝑗0, 𝑐1, 𝑗1, . . . , 𝑐𝑛, 𝑗𝑛 with { 𝑗𝑠−1, 𝑐𝑠 } ∈ 𝜇 ′ and { 𝑗𝑠 , 𝑐𝑠 } ∈ 𝜇 for all

𝑠 ∈ {1, . . . , 𝑛} for some 𝑗1, . . . , 𝑗𝑛 ∈ 𝑁 and 𝑐1, . . . , 𝑐𝑛 ∈ 𝐶 . Since 𝑃 is

of maximal length, it follows that 𝜇 ′( 𝑗𝑛) = ∅.
Now 𝑃𝜇 and 𝑃𝜇′ are matchings of 𝐺𝜋

𝐼 ′ . Since 𝑖 is unmatched in

𝑃𝜇 but is matched in 𝑃𝜇′ , 𝑃𝜇 and 𝑃𝜇′ do not match the same set

of agents. By the proof of Lemma 5.1(4), 𝑤 ′(𝑃𝜇 ) ≠ 𝑤 ′(𝑃𝜇′). If
𝑤 ′(𝑃𝜇 ) > 𝑤 ′(𝑃𝜇′), then 𝑃 is an augmenting path for 𝜇 ′ in 𝐺𝜋

𝐼 ′ , so

that 𝜇 ′ − 𝑃𝜇′ ∪ 𝑃𝜇 is a matching with larger weight than 𝜇 ′. This
contradicts that 𝜇 ′ is a maximal weight matching of 𝐺𝜋

𝐼 ′ . Hence,

𝑤 ′(𝑃𝜇′) > 𝑤 ′(𝑃𝜇 ). □

We will in the following freely and without mentioning use the

fact that ∑
𝑒∈𝜇

𝑤𝜋 (𝑒) < 𝜖 = 𝑤 ′𝑐 ({𝑖 ′, 𝑑}) −𝑤𝑐 ({𝑖 ′, 𝑑})

= 𝑤 ′({𝑖 ′, 𝑑}) −𝑤 ({𝑖 ′, 𝑑})
and similarly for𝑤 ′𝜋 .

Claim 3. 𝑗𝑠 = 𝑖 ′ and 𝑐𝑠+1 = 𝑑 for some 𝑠 ∈ {1, . . . , 𝑛 − 1}.

Proof. We have 𝑤 ({ 𝑗, 𝑐}) = 𝑤 ′({ 𝑗, 𝑐}) for all 𝑗 ∈ 𝑁 and 𝑐 ≠

𝑑 . So if 𝑐𝑠 ≠ 𝑑 for all 𝑠 ∈ {1, . . . , 𝑛}, then, by Claim 2, 𝑃 is an

augmenting path for 𝜇 in𝐺𝜋
𝐼
. Since this would contradict that 𝜇 is

a maximal weight matching of 𝐺𝜋
𝐼
. Assume for contradiction that

𝑠 = 1 and 𝑐𝑢 ≠ 𝑑 for all 𝑢 ∈ {2, . . . , 𝑛}. Then,
𝑤 (𝑃𝜇′) > 𝑤 ′(𝑃𝜇′) ≥ 𝑤 ′(𝑃𝜇 ) = 𝑤 (𝑃𝜇 )

where we use the assumption we seek to contradict and the fact

that 𝑖’s priority for 𝑑 decreases from 𝐼 to 𝐼 ′ for the first inequality,
the fact that 𝜇 ′ − 𝑃𝜇′ ∪ 𝑃𝜇 is a matching for𝐺𝜋

𝐼 ′ and 𝜇
′
is a maximal

weight matching for 𝐺𝜋
𝐼 ′ for the second inequality, and again the

assumption we seek to contradict for the last equality. Since 𝜇 −
𝑃𝜇 ∪ 𝑃𝜇′ is a matching for 𝐺𝜋

𝐼
, this contradicts that 𝜇 is a maximal

weight matching for𝐺𝜋
𝐼
. Hence, there is 𝑢 ∈ {2, . . . , 𝑛} with 𝑐𝑢 = 𝑑 .

Using that 𝑤 ({ 𝑗𝑢−1, 𝑑}) = 𝑤 ′({ 𝑗𝑢−1, 𝑑}) if 𝑗𝑢−1 ≠ 𝑖 ′, we conclude
that 𝑗𝑢−1 = 𝑖 ′. □

Let 𝑠 as in Claim 3. Let 𝑃1 the segment of 𝑃 from 𝑖 to 𝑗𝑠 = 𝑖 ′

and 𝑃2 the segment from 𝑗𝑠 to 𝑗𝑛 . Lastly, let 𝑃
𝑢
𝜇 = 𝑃𝜇 ∩ 𝑃𝑢 and

𝑃𝑢
𝜇′ = 𝑃𝜇′ ∩ 𝑃𝑢 for 𝑢 ∈ {1, 2}. Note that

|𝑃𝑢𝜇 | = |𝑃𝑢𝜇′ | (3)

𝑖

𝑗1

.

.

.

𝑗𝑠

𝑗𝑠+1

.

.

.

𝑗𝑛−1

𝑗𝑛

𝑐1

.

.

.

𝑐𝑠

𝑐𝑠+1

𝑐𝑠+2

.

.

.

𝑐𝑛

𝑃1

𝑃2

Figure 3: Augmenting path for 𝜇 in 𝐺𝜋
𝐼 ′ alternating between

edges in 𝜇 ′ (in red) and edges in 𝜇 (in blue). The dotted re-
gions indicate the paths 𝑃1 and 𝑃2 defined after the proof of
Claim 3. Thus, 𝑗𝑠 = 𝑖 ′ and 𝑐𝑠+1 = 𝑑 .

since both 𝑃𝑢 have even length (the initial and terminal vertex of

each 𝑃𝑢 is an agent) and 𝑃𝑢 alternates between edges in 𝜇 ′ and 𝜇.

Claim 4. 𝑤𝑐 (𝑃2𝜇′ − {{𝑖
′, 𝑑}} ∪ {{𝑖, 𝑑}}) = 𝑤𝑐 (𝑃2𝜇 ) and 𝑤 ′𝑐 (𝑃2𝜇′) =

𝑤 ′𝑐 (𝑃2𝜇 ).

Proof. We have the following sequence of (in)equalities, ex-

plained below.

𝑤𝑐 (𝑃2𝜇′ − {{𝑖
′, 𝑑}} ∪ {{𝑖, 𝑑}}) = 𝑤 ′𝑐 (𝑃2𝜇′) ≥ 𝑤 ′𝑐 (𝑃2𝜇 ) = 𝑤𝑐 (𝑃2𝜇 )

The first equality uses that 𝑤𝑐 ({𝑖, 𝑑}) = 𝑤 ′𝑐 ({𝑖 ′, 𝑑}) and

𝑤𝑐 ({ 𝑗, 𝑐}) = 𝑤 ′𝑐 ({ 𝑗, 𝑐}) unless { 𝑗, 𝑐} = {𝑖, 𝑑} or { 𝑗, 𝑐} = {𝑖 ′, 𝑑}.
The last equality also uses the latter fact. The inequality uses that

𝜇 ′ − 𝑃2
𝜇′ ∪ 𝑃2𝜇 is a matching for 𝐺𝜋

𝐼 ′ and 𝜇 ′ is a maximal weight

matching for 𝐺𝜋
𝐼 ′ . If the inequality is strict, then

𝑤 (𝜇 − 𝑃2𝜇 ∪ 𝑃2𝜇′ − {{𝑖
′, 𝑑}} ∪ {{𝑖, 𝑑}}) > 𝑤 (𝜇)

which contradicts that 𝜇 is a maximal weight matching for 𝐺𝜋
𝐼
.

Hence, both parts of the claim follow. □

Claim 5. 𝑤 ′𝑐 (𝑃1𝜇 ) ≥ 𝑤 ′𝑐 (𝑃1𝜇′).

Proof. We have

𝑤 ′𝑐 (𝑃1𝜇 ) = 𝑤𝑐 (𝑃1𝜇 ) ≥ 𝑤𝑐 (𝑃1𝜇′) ≥ 𝑤 ′𝑐 (𝑃1𝜇′)

The first inequality follows from the fact that 𝜇 − 𝑃1𝜇 ∪ 𝑃1
𝜇′ is a

matching for 𝐺𝜋
𝐼
and 𝜇 is a maximal weight matching for 𝐺𝜋

𝐼
. The

remaining (in)equalities use the same arguments as in the sequence

of (in)equalities in Claim 4. □
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We conclude from the second part of Claim 4 and Claim 5 that

𝑤 ′𝑐 (𝑃𝜇 ) ≥ 𝑤 ′𝑐 (𝑃𝜇′). So if 𝑗𝑛 ≻𝜋 𝑖 , then𝑤 ′(𝜇 ′ − 𝑃𝜇′ ∪ 𝑃𝜇 ) > 𝑤 ′(𝜇 ′),
which contradicts that 𝜇 ′ is a maximal weight matching for 𝐺𝜋

𝐼 ′ .

On the other hand, if 𝑖 ≻𝜋 𝑗𝑛 , then, by the first part of Claim 4,

𝑤 (𝜇 − 𝑃2𝜇 ∪ 𝑃2
𝜇′ − {{𝑖

′, 𝑑}} ∪ {{𝑖, 𝑑}}) > 𝑤 (𝜇), which contradicts

that 𝜇 is a maximal weight matching for 𝐺𝜋
𝐼
. Hence, it cannot be

that 𝜇 (𝑖) = ∅ while 𝜇 ′(𝑖) ≠ ∅. □

Lemma 5.3. Let 𝐼 = (𝑁,𝐶, (≿𝑐 ), (𝑞𝑐 )) and 𝐼 ′ = (𝑁,𝐶, (≿𝑐 ), (𝑞′𝑐 ))
be two instances so that 𝑞𝑐 ≤ 𝑞′𝑐 for all 𝑐 ∈ 𝐶 . If 𝑖 ∈ 𝑁 is matched
in some maximal weight matching of 𝐺𝜋

𝐼
, then 𝑖 is matched in any

maximal weight matching of 𝐺𝜋
𝐼 ′ .

Proof. Let 𝜇 and 𝜇 ′ be maximal weight matchings of 𝐺𝜋
𝐼
and

𝐺𝜋
𝐼 ′ , respectively. Assume that 𝜇 (𝑖) = 𝑐 ≠ ∅ and 𝜇 ′(𝑖) = ∅. We derive

a contradiction by constructing an augmenting path for either 𝜇 in

𝐺𝜋
𝐼
or 𝜇 ′ in 𝐺𝜋

𝐼 ′ . We will use without further mention that 𝐺𝜋
𝐼
and

𝐺𝜋
𝐼 ′ have the same set of vertices and edges and the same weight

function. Moreover, since 𝑞𝑐 ≤ 𝑞′𝑐 for all 𝑐 , every matching of 𝐺𝜋
𝐼

is also a matching of 𝐺𝜋
𝐼 ′ .

Let P be the set of all paths in 𝐺𝜋
𝐼
that alternate between edges

in 𝜇 and 𝜇 ′ and contain the edge {𝑖, 𝜇 (𝑖)} ∈ 𝜇 − 𝜇 ′. Note that P is

non-empty since {{𝑖, 𝜇 (𝑖)}} ∈ P. Let 𝑃 = 𝑃𝜇 ∪ 𝑃𝜇′ be of maximal

length among all paths in P.

𝑃𝜇 and 𝑃𝜇′ are matchings of 𝐺𝜋
𝐼 ′ that do not match the same set

of agents. Hence, by the proof of Lemma 5.1(4), 𝑤 (𝑃𝜇 ) ≠ 𝑤 (𝑃𝜇′).
If 𝑤 (𝑃𝜇 ) > 𝑤 (𝑃𝜇′), then 𝑃 is an augmenting path for 𝜇 ′ in 𝐺𝜋

𝐼 ′ .

Since 𝑖 is unmatched in 𝜇 ′ and 𝑃 has maximal length, 𝜇 ′ − 𝑃𝜇′ ∪ 𝑃𝜇
is a matching of 𝐺𝜋

𝐼 ′ . The weight of this matching is larger than

that of 𝜇 ′, contradicting that 𝜇 ′ has maximal weight. Similarly, if

𝑤 (𝑃𝜇 ) < 𝑤 (𝑃𝜇′), then |𝑃𝜇′ | ≥ |𝑃𝜇 |, so that the initial vertex of 𝑃 is

𝑖 and the terminal vertex is an agent 𝑗 ∈ 𝑁 that is unmatched in 𝜇.

Hence, 𝜇 − 𝑃𝜇 ∪ 𝑃𝜇′ is a matching of 𝐺𝜋
𝐼
, which has larger weight

than 𝜇, a contradiction. □

We summarize the conclusions of Lemmas 5.1, 5.2, and 5.3 in the

following theorem.

Theorem 5.4. Any allocation rule that chooses a maximal weight
matching of 𝐺𝜋

𝐼
for every instance 𝐼

(1) complies with acceptability requirements,
(2) is of maximum size among feasible matchings,
(3) respects priorities,
(4) is strategyproof if priorities are strict, and
(5) is monotonic in quotas.

6 COMPUTATIONAL ASPECTS
In this section, we discuss the computational complexity of finding

maximal weight matchings. We show that a maximal weight match-

ing of𝐺𝜋
𝐼
can be computed in strongly polynomial-time. Hence, an

allocation rule that chooses maximal weight matchings can be im-

plemented efficiently. The polynomial-time guarantee follows from

the fact that a maximum weight 𝑏-matching with upper capacities

on the nodes can be computed in strongly polynomial time even if

edge weights are rational [42, Theorem 32.5].

1

2

3

𝑐1

𝑐2
1 + 2𝜖

1 + 2𝜖

1 + 𝜖

𝑞𝑐
1
=1

𝑞𝑐
2
=1

Figure 4: Themodified reservation graph𝐺𝐼 for the instance
𝐼 in Example 3.5. The dotted lines correspond to edges in 𝐸.
The numbers close to the edges are their weights according
to𝑤 .

Reduction from 𝑏-matchings to matchings. One can avoid having

to compute a maximal weight 𝑏-matching and use a standard algo-

rithm for finding maximal weight matchings. We can expand𝐺𝜋
𝐼
by

cloning each vertex 𝑐 ∈ 𝐶 exactly𝑞𝑐 times. Cloningmeans replacing

the vertex by several vertices with the same neighbors and weights

on the adjacent edges. In the expanded graph, we have a vertex for

each of the units reserved for a category rather than a single vertex

for each category. We can compute a maximal weight matching of

the expanded graph using the Hungarian Algorithm [see, e.g., 34]

for bipartite graphs, which runs in polynomial-time. It is straightfor-

ward to see that a maximal weight matching of the expanded graph

corresponds in the obvious way to a maximal weight 𝑏-matching

in the original reservation graph.

Avoiding high-precision weights. Although maximal weight

matchings of the reservation graph can be computed in strongly

polynomial-time, our approach requires using weights of high pre-

cision (the space requirement is still |𝐶 |𝑛 log𝑛 bits) because of the

exponentially small weights of the weight function𝑤𝜋 . To avoid

these high-precision weights, we provide an alternative polynomial-

time algorithm that gives the same outcome. It iteratively computes

maximum weight 𝑏-matchings of at most 𝑛 graphs. These graphs

are the same as the reservation graph𝐺𝜋
𝐼
except that the weights

𝑤𝜋 awarded based on the baseline ordering are omitted.

More precisely, for a given instance 𝐼 , the correspondingmodified
reservation graph 𝐺𝐼 = (𝑁 ∪ 𝐶, 𝐸,𝑤, (𝑞𝑐 )) has the same set of

vertices and edges and the same quotas as the reservation graph

𝐺𝜋
𝐼
. We weight of an edge {𝑖, 𝑐} ∈ 𝐸 is

𝑤 ({𝑖, 𝑐}) = 1 +𝑤𝑐 ({𝑖, 𝑐})
where𝑤𝑐 is defined as in Section 5. The modified reservation graph

for the instance in Example 3.5 is depicted in Figure 4.

To state our algorithm, we also define a graph 𝐻𝑁 ′
𝐼

that is

parametrized by a subset of agents 𝑁 ′. It is identical to 𝐺𝐼 except

that for each 𝑖 ∈ 𝑁 ′ and each 𝑐 with 𝑖 ≻𝑐 ∅,𝑤𝑖 (𝑐) = 2𝑛 + 1.
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The algorithm is specified in pseudo-code Algorithm 1. The main

idea of the algorithm is to work on the graph 𝐺𝐼 and iteratively

go through the agents in the baseline ordering and build the work-

ing set of selected agents 𝑁 ∗. The set of agents in 𝑁 ∗ can all be

matched in some maximum weight matching of 𝐺𝐼 . For the new

agent 𝑖 under consideration, we check whether 𝑖 can be matched in

a maximum weight matching of 𝐺𝐼 that also matches the agents

currently in 𝑁 ∗. This is checked by modifying the weights of 𝐺𝐼

to consider the graph 𝐻
𝑁 ∗∪{𝑖 }
𝐼

. The graph 𝐻
𝑁 ∗∪{𝑖 }
𝐼

is the same as

graph 𝐺𝐼 except that a large weight of 2𝑛 is added to the edges

adjacent to agents in 𝑁 ∗ ∪ {𝑖}. This ensures that there is a maxi-

mum weight matching in𝐺𝐼 that matches the agents in 𝑁 ∗ ∪ {𝑖} if
and only if the maximum weight matching of 𝐻

𝑁 ∗∪{𝑖 }
𝐼

has weight

mw(𝐻𝑁 ∗∪{𝑖 }
𝐼

) = mw(𝐺𝐼 )+2𝑛( |𝑁 ∗ |+1), wheremw(𝐺) is theweight
of a maximum weight matching in a graph 𝐺 .

Input: 𝐼 = (𝑁,𝐶, (≿𝑐 ), (𝑞𝑐 )); a baseline ordering 𝜋 over agents in

𝑁

Output: A matching of 𝐺𝐼 .

1: Construct the modified reservation graph 𝐺𝐼 .

2: Compute the weight𝑚𝑤 (𝐺𝐼 ) of a maximum weight matching

of 𝐺𝐼 .

3: Selected set of agents 𝑁 ∗ ← ∅
4: for agent 𝑖 ∉ 𝑁 ∗ down the ordering 𝜋 do
5: Consider graph 𝐻

𝑁 ∗∪{𝑖 }
𝐼

that is identical to 𝐺𝐼 except that

for all 𝑗 ∈ 𝑁 and 𝑐 ∈ 𝐶 ,

𝑤 ({ 𝑗, 𝑐}) =
{
1 + 2𝑛 +𝑤𝑐 ({ 𝑗, 𝑐}) if 𝑗 ∈ 𝑁 ∗ ∪ {𝑖}
1 +𝑤𝑐 ({ 𝑗, 𝑐}) if 𝑗 ∉ 𝑁 ∗ ∪ {𝑖}

6: if 𝑚𝑤 (𝐻𝑁 ∗∪{𝑖 }
𝐼

) =𝑚𝑤 (𝐺𝐼 ) + 2𝑛( |𝑁 ∗ | + 1) then
7: Add 𝑖 to 𝑁 ∗

8: Compute a maximum weight b-matching 𝜇 of 𝐻𝑁 ∗
𝐼

.

9: return 𝜇

Algorithm 1

Example 6.1 (Illustration of Algorithm 1). Suppose the baseline
ordering is 𝜋 = 123. In that case the algorithm first computes𝐺𝐼 as

shown in Figure 2. The maximum weight matching of the graph

is {{3, 𝑐1}, {2, 𝑐2}}. It is the unique maximum weight matching.

Therefore, we are unable to add agent 1 to 𝑁 ∗. We then check 2

and 3 which are able to be added to 𝑁 ∗.

7 DISCUSSION
We presented an allocation rule that applies to resource allocation

problems in which the resources are reserved for categories, each

of which has a priority ranking over agents. The rule has several

properties that are desirable in applications. It is fair in the sense

that it complies with the acceptability requirements and respects

the priorities, it is efficient in that it yields maximum size matchings,

and it never incentivizes agents to under-report which categories

they are eligible for. Furthermore, weakly increasing quotas does

not harm the agents who get a unit.

We can reframe the main theorem in the context of school

choice [1] by viewing agents as students and categories as schools.

The students are indifferent between all schools that are accept-

able for them. The schools have priorities over the students. Then

Theorem 5.4 reads as follows.

Theorem 7.1. Consider the school choice problem where the stu-
dents partition the schools into acceptable and unacceptable schools.
Then, there is an allocation rule that only matches students to ac-
ceptable schools, has not justified envy, is non-wasteful, and matches
the maximal feasible number of students. Moreover, if the schools’
preferences are strict, the rule is strategyproof for students.

Our allocation rule involves a baseline ordering 𝜋 over the agents,

which gives rise to a natural ordering in which patients are allocated

units. We can go down the ordering 𝜋 and give a unit to the agent

that was matched by the allocation rule.

Our rule focusses on giving units to categories that correspond

to preferential groups such as front-line workers. If some units

are not utilized because of eligibility requirements, they can be

given to the unmatched agents. In this case, the reservations are

viewed as soft. Policy makers may wish to use a certain number

of ‘unreserved’ units [38] to general agents who do not fall into

any priority groups. This requirement can easily be embedded into

our rule as follows. Once we have used our rule to match agents to

preferential categories, we can greedily give the unreserved units

to the unmatched agents in the order of the baseline ordering. We

refer to this version of our rule as the weighted reservation graph
(WRG) rule.

We assumed that the categories and their capacities are primi-

tives of the model. A separate research problem is to decide on the

distribution of the units over the categories with the aim to reduce

the pandemic for the society. Finally, it will be useful to consider

a more fine-grained model that allows quantifying how much a

patient needs a unit.
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