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ABSTRACT
Green security domains feature defenders who plan patrols in the

face of uncertainty about the adversarial behavior of poachers,

illegal loggers, and illegal fishers. Importantly, the deterrence effect

of patrols on adversaries’ future behavior makes patrol planning a

sequential decision-making problem. Therefore, we focus on robust

sequential patrol planning for green security following the minimax

regret criterion, which has not been considered in the literature. We

formulate the problem as a game between the defender and nature

who controls the parameter values of the adversarial behavior and

design an algorithm MIRROR to find a robust policy. MIRROR uses

two reinforcement learning–based oracles and solves a restricted

game considering limited defender strategies and parameter values.

We evaluate MIRROR on real-world poaching data.
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1 INTRODUCTION
Defenders in green security domains aim to protect wildlife, forests,

and fisheries and are tasked to strategically allocate limited re-

sources in a partially unknown environment [8]. For example, to

prevent poaching, rangers will patrol a protected area to locate

and remove snares (Figure 1). Over the past few years, predictive

models of poacher behavior have been developed and deployed to

parks around the world, creating both opportunity and urgency for

effective patrol planning strategies [12, 15, 44].

While patrol planning for security has been studied under game-

theoretic frameworks [2, 17, 24], green security domains have two

crucial challenges: the uncertainty in adversaries’ behavior model

and the deterrence effect of patrols — how current patrols reduce the

likelihood that adversaries attack in the future. Data is often scarce

in these domains and it is hard to learn an accurate adversarial

behavior model [8, 37, 43]. Patrols planned without considering
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Figure 1: Rangers remove
a snare in Srepok Wildlife
Sanctuary in Cambodia,
where the government
plans to reintroduce tigers
in 2022.

the imperfection of the behavior model would have limited effec-

tiveness in practice. Deterrence is hypothesized to be a primary

mechanism that makes patrols effective in reducing illegal activ-

ity [20], especially in domains such as wildlife protection, as rangers

rarely apprehend poachers and only remove an estimated 10% of

snares [27]. These characteristics make apparent the need for robust

sequential patrol planning for green security, which is the focus

of this paper. We confirm the deterrence effect in green security

domains for the first time through analyzing real poaching data,

providing real-world footing for this research.

In this paper, we consider the minimax regret criterion for ro-

bustness [36, 40]: minimize the maximum regret, which is defined

as the maximum difference under any uncertainty instantiation

between the expected reward of the chosen strategy against the

expected reward of an optimal strategy. Compared to maximin re-

ward, minimax regret is more psychologically grounded according

to phenomena such as risk aversion [23] and is less conservative

and sensitive to worst-case outcomes [18]. However, optimizing

for regret is challenging [30], especially for complex sequential

decision making problems as evidenced by lack of past work on

minimax regret in deep reinforcement learning (RL), despite the

success and popularity of deep RL in recent years [22, 26]. The main

obstacle is that when the environment parameters change, the re-

ward of a strategy changes and the optimal strategy also changes,

which makes it hard to quickly estimate the maximum regret of a

strategy.

We overcome this obstacle by developing a new method
1
named

MIRROR that enables minimax regret planning under environment

uncertainty using RL. We model the robust planning problem as

a two-player, zero-sum game between an agent, who looks for

minimax regret–optimal policies, and nature, who looks for regret-

maximizing instantiations of the uncertain environment parameters

(referred to as max-regret game). This model enables us to use the

double oracle method [25] and the policy-space response oracle

(PSRO) framework [19] to incrementally generate strategies and

1
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environment parameters to be considered. More specifically, MIR-

ROR includes two RL-based oracles. The defender oracle solves a

typical sequential decision-making problem and returns a defender

strategy. The nature oracle finds out the environment parameters

and the corresponding optimal defender strategy that lead to the

highest regret. We use policy-gradient approach for both oracles.

In the nature oracle, we treat the environment parameters as input

to the policy network and update the environment parameters and

the network parameters with a wake–sleep procedure. We further

enhance the algorithm with parameter perturbation in both oracles.

Our contributions are summarized as follows. (1) We provide a

realistic adversary model learned from real-world poaching data

from Queen Elizabeth National Park (QENP) in Uganda, which

demonstrates deterrence and opens the door to further RL research

in service of protecting the environment. (2) We propose MIRROR,

a framework to calculate minimax regret–optimal policies using RL

for the first time, and apply this approach to green security domains.

(3) We prove that MIRROR converges to an 𝜀–optimal strategy in

a finite number of iterations in our green security setting. (4) We

empirically evaluate MIRROR on real-world poaching data from

QENP.

2 RELATEDWORK
Robust planning with minimax regret Minimax regret has

been considered for preference elicitation of additive utilities [5]

and rewards [33], as well as robotics planning in uncertain Markov

decision processes with a model-based approach [34]. Double or-

acle [25] has been used to optimize for minimax regret in secu-

rity games and in robust optimization [10, 30]. Double oracle has

also been used without minimax regret for solving large zero-sum

games [3, 14].

Robust planning in RL Robustness in RL has been heavily

studied, both in the context of robust adversarial RL [31, 32, 46] and

nonstationarity in multi-agent RL settings [21, 47]. For example,

PSRO extends double oracle from state-independent pure strategies

to policy-space strategies to be used for multiplayer competitive

games [19]. Zhang et al. [46] consider robustness against adversar-

ial perturbations on state observations. The line of work whose

setting is most similar to our problem is robust RL with model un-

certainty, specifically in the transition and reward functions [39, 47].

However, these approaches all consider robustness subject to max-

imin reward, whereas we optimize for minimax regret robustness.

The two objectives are incompatible; we cannot simply substitute

minimax regret into the reward function and solve using minimax

reward, as computing the maximum regret incurs the challenge of

knowing the optimal reward.

Green security games (GSGs) Literature on GSGs model the

problem in green security domains as a game between a defender

and boundedly rational attackers, with the assumption that attacker

models can be learned from data [7, 29, 42, 45]. Most of this work

does not consider uncertainty in the learned attacker model and

solve the patrol planning problem using mathematical program-

ming, which is not scalable for planning sequential patrols over

time horizons going beyond 2 to 3 timesteps. RL has been used for

planning in GSGs with real-time information to model defenders

responding to footprints during a patrol [41]. However, uncertainty

and robustness have not been explicitly considered together in GSG

literature and much existing work on green security do not have

access to real-world data and realistic models of deterrence.

3 PROBLEM STATEMENT
In green security settings, we have a defender (e.g., ranger) who
conducts patrols in a protected area to prevent resource extraction

by an attacker (e.g., poacher or illegal logger). Let 𝑁 be the number

of targets, such as 1 × 1 km regions in a protected area, that we are

trying to protect. We have timesteps 𝑡 = 1, 2, . . . ,𝑇 up to some finite

time horizon 𝑇 where each timestep can represent, for example, a

one-month period. The defender needs to choose a patrol strategy

(also called policy) 𝜋 ∈ Π, which sequentially allocates patrol effort.

We denote patrol effort as a(𝑡 ) , where 𝑎 (𝑡 )
𝑖

∈ [0, 1] represents how
much effort the patrollers allocate to target 𝑖 at time 𝑡 , subject to a

budget 𝐵 such that

∑
𝑖 𝑎

(𝑡 )
𝑖

≤ 𝐵 for all 𝑡 .

Consider the poaching scenario specifically. Let w(𝑡 ) ∈ R𝑁≥0
describe the distribution of wildlife in a protected area at timestep 𝑡 ,

with 𝑤
(𝑡 )
𝑖

denoting wildlife density in target 𝑖 . What the rangers

care about the most is the total wildlife density by the end of the

planning horizon, i.e.,

∑
𝑖 𝑤

(𝑇 )
𝑖

. Poachers come into the park and

place snares to trap animals. Their behavior is governed by a num-

ber of factors including the current patrol strategy, the past patrol

strategy due to the deterrence effect, the geographic features includ-

ing distance from the park boundary, elevation, and land cover, and

others. Lacking complete and high-quality data about past poaching

patterns, we are not able to build an accurate model of the poacher

behavior.

Therefore, we consider a parameterized model for attacker’s

behavior and assume that the values of some of the parameters, de-

noted by z, are uncertain. We assume that z is in a given uncertainty
region 𝑍 that specifies a range 𝑧 𝑗 ∈ [𝑧 𝑗 , 𝑧 𝑗 ] for each uncertain pa-

rameter 𝑗 . We have no a priori knowledge about distribution over 𝑍 .

We want to plan a patrol strategy 𝜋 for the defender that is robust

to parameter uncertainty following the minimax regret criterion.

Let r(𝜋, z) be the defender’s expected reward for taking policy 𝜋

under environment parameters z, e.g., the expected total wildlife
density at the end of the planning horizon. Then the regret incurred

by the agent for playing strategy 𝜋 when the parameter values are

z is regret(𝜋, z) = r(𝜋∗ (z), z) − r(𝜋, z), where 𝜋∗ (z) is the optimal

policy that maximizes reward under parameters z.
Our objective is then to find a strategy 𝜋 for the defender that

minimizes maximum possible regret under any parameter values

z that falls within the uncertainty region 𝑍 . Formally, we want to

solve the following optimization problem

min

𝜋
max

z

(
r(𝜋∗ (z), z) − r(𝜋, z)

)
. (1)

We can formulate this robust planning problem as a two-player

game between an agent who wants to learn an optimal defender

strategy (or policy) 𝜋 against nature who selects worst-case param-

eter values z. Then the agent’s payoff is −regret(𝜋, z) and nature’s

payoff is regret(𝜋, z).

Definition 1 (Max-regret game). We define the max-regret game
as a zero-sum game between agent and nature where the agent’s



payoff is

payoff(𝜋, z) = −regret(𝜋, z) = r(𝜋, z) − r
(
𝜋∗ (z), z

)
. (2)

The agent can also choose a mixed strategy (or randomized

policy) 𝜋̃ , which is a probability distribution over Π. We denote

by Δ(Π) the set of defender’s mixed strategies. Likewise, we have

mixed strategy z̃ ∈ Δ(𝑍 ) for nature.

Generalizability. Our approach applies not just to green security

domains, but is in fact applicable to any setting in which we must

learn a sequential policy 𝜋 with uncertainty in some environment

parameters z where our evaluation is based on minimax regret.

Our framework is also not restricted to hyper-rectangular shaped

uncertainty regions; any form of uncertainty with a compact set

on which we do not have a prior belief would work.

3.1 Real-World Deterrence Model
No previous work in artificial intelligence or conservation biol-

ogy has provided evidence of deterrent effect of ranger patrols on

poaching, a topic critically important to planning real-world ranger

patrols. Thus in our work on planning for green security domains,

we began by exploring an open question about how poachers re-

spond to ranger patrols.

Past work has investigated deterrence to inconclusive results

[6, 9]. Using real poaching data from Queen Elizabeth National Park

(QENP) in Uganda, we study the effect of patrol effort on poacher

response. We find clear evidence of deterrence in that higher levels

of past patrols reduce the likelihood of poaching. We are the first

to do so. We also find that more past patrols on neighboring targets

increase the likelihood of poaching, suggesting displacement.

Figure 2: Snares.

For each target, we calculate

the total ranger patrol effort (in

kilometers patrolled) and count

the number of instances of illegal

activity detected per month. We

construct the patrol effort from

138,000 GPS waypoints across

seven years of QENP poaching

data. Observations of illegal activ-

ity are predominantly snares, but

also include bullet cartridges, traditional weapons, and encounters

with poachers.

Let 𝑧𝑖 be the attractiveness of target 𝑖 . To understand the effect

of patrol effort on poaching activity, we learn the probability of

detecting illegal activity in target 𝑖 as a linear combination of 𝑧𝑖 +
𝛾 · 𝑎 (𝑡 )

𝑖
+ 𝛽 · 𝑎 (𝑡−1)

𝑖
, which is then squashed through the logistic

function. The parameter 𝛽 is the coefficient on past patrol effort

𝑎
(𝑡−1)
𝑖

, measuring the deterrence effect we are trying to isolate,

and 𝛾 is the coefficient on current patrol effort 𝑎
(𝑡 )
𝑖

, measuring the

difficulty of detecting snares.

See Table 1 for the learned values of the average attractiveness of

each target 𝑧𝑖 , the coefficient on current effort 𝛾 , and the coefficient

on past effort 𝛽 . Each row studies this effect for a different time

interval. For example, 1 year, 3 months looks at the impact of a year

of previous patrol effort on illegal activity in the subsequent three

months. The parameter values are normalized. The learned value

Table 1: Learned coefficients, revealing deterrence

𝑧𝑖 𝛾 𝛽

1 month, 1 month −9.285 1.074 −0.165
3 month, 3 month −10.624 0.685 −0.077
1 year, 1 month −9.287 1.061 −0.217
1 year, 3 month −10.629 0.676 −0.042
1 year, 1 year −8.559 2.159 −0.306

Table 2: Learned coefficients, with neighbors included, re-
vealing displacement

𝑧𝑖 𝛾 𝛽 𝜂

3 × 3 −10.633 0.687 −0.098 0.696

5 × 5 −10.636 0.688 −0.097 0.392

7 × 7 −10.632 0.688 −0.097 0.518

of 𝛽 is negative across all datasets and settings. Thus, increased past
patrol effort does have a measurable effect of deterring poaching.

Ideally, when poachers are deterred by ranger patrols, theywould

leave the park completely and desist their hunt of wildlife. Alterna-

tively, they may move to other areas of the park. We show that the

latter appears to be true. To do so, we study the spatial relationship

between neighboring targets, using three spatial resolutions: 3 × 3,

5 × 5, and 7 × 7. We learn

𝑧𝑖 + 𝛾 · 𝑎 (𝑡 )
𝑖

+ 𝛽 · 𝑎 (𝑡−1)
𝑖

+ 𝜂 ·
∑

𝑗 ∈neighbors(𝑖)
𝑎
(𝑡−1)
𝑗

(3)

where 𝜂 is the coefficient on past patrol effort on neighboring cells.

As shown in Table 2, all learned values of 𝜂 are positive, indicating

that increased patrols on neighboring areas increases the likelihood

of poaching on a target in the next timestep. This result is consistent

across the three spatial resolutions, and strongest for the narrowest

window of 3 × 3. Observe as well that the values for 𝑧𝑖 , 𝛾 , and 𝛽

are remarkably consistent, demonstrating the robustness of our

findings.

3.2 Green Security Model
In green security settings, the environment dynamics, including

attacker behavior, can be described by an uncertainMarkov decision

process (UMDP) defined by the tuple ⟨S, s0,A, T,R⟩. The state s
is a tuple (a(𝑡−1) ,w(𝑡−1) ) of past patrol effort and past wildlife

with initial state s0 = (0,w(0) ). The action a(𝑡 ) is an effort vector

describing time spent in each target, subject to a budget 𝐵. Note that

the model can be generalized to consider a sequence of past effort

and wildlife to model an attacker with a longer memory length.

The environment dynamics are governed by the transitions, a
compact set T containing the possible mappings Tz : S ↦→ S where

the transition Tz ∈ T depends on environment parameters z. A
mixed strategy z̃ would produce a distribution over T. These transi-

tions are what makes our Markov decision process uncertain, as we

do not know which mapping is the true transition. We model the

adversary behavior with a simple logistic model, based on learned

deterrence effect. The probability that the poacher will attack a



target 𝑖 is given by the function

𝑝
(𝑡 )
𝑖

= logistic

©­«𝑧𝑖 − 𝛽 · 𝑎 (𝑡−1)
𝑖

+ 𝜂 ·
∑

𝑗 ∈neighbors(𝑖)
𝑎
(𝑡−1)
𝑗

ª®¬ (4)

where parameters 𝛽 > 0 and 𝜂 > 0 govern the deterrence and

displacement effects, as described in Section 3.1. At each time step,

the poacher takes some action 𝑘𝑖 ∈ {0, 1} where they either place

a snare 𝑘𝑖 = 1 or not 𝑘𝑖 = 0. The realized adversary attack 𝑘𝑖 is

drawn from Binomial distribution 𝑘𝑖 ∼ 𝐵(𝑝𝑖 ).
The actions of the poacher and ranger then affect the wildlife

population of the park. We use a regression model as in

𝑤
(𝑡 )
𝑖

= max{0, (𝑤 (𝑡−1)
𝑖

)𝜓 − 𝛼 · 𝑘 (𝑡−1)
𝑖

· (1 − 𝑎
(𝑡 )
𝑖

)} (5)

where 𝛼 > 0 is the strength of poachers eliminating wildlife, and

𝜓 > 1 is the wildlife natural growth rate.

Our objective is to maximize the number of wildlife. The reward
𝑅 is the sum of wildlife at the time horizon, so 𝑅(s(𝑡 ) ) = ∑𝑁

𝑖=1𝑤
(𝑇 )
𝑖

if 𝑡 = 𝑇 and 𝑅(s(𝑡 ) ) = 0 otherwise. To understand the relationship

between defender reward 𝑅 in the game and the expected reward r
of the agent oracle from our objective in Equation 1, we have

r(𝜋, z) = E
[
𝑅(s(𝑇 ) )

]
(6)

taking the expectation over s(𝑡+1) ∼ Tz (s(𝑡 ) , 𝜋 (s(𝑡 ) ), s(𝑡+1) ) with
initial state s(0) = (w(0) , 0).

4 ROBUST PLANNING
We propose MIRROR, which stands for MInimax Regret Robust

ORacle. MIRROR is an algorithm for computing minimax regret–

optimal policies in green security settings to plan patrols for a

defender subject to uncertainty about the attackers’ behavior. MIR-

ROR also applies in generic RL contexts with a compact uncertainty

set over transitions and rewards.

To learn a minimax regret–optimal policy for the defender, we

take an approach based on double oracle [25]. Given our sequen-

tial problem setting of green security, we build on policy-space

response oracle (PSRO) [19]. As discussed in Section 3, we pose

the minimax regret optimization as a zero-sum game in the max

regret space, between an agent (representing park rangers) who

seeks to minimize max regret and nature (uncertainty over the ad-

versary behavior parameters) which seeks to maximize regret. Our

objective can be expressed as an optimization problem, as defined

in Equation 1.

The full MIRROR procedure for minimax regret optimization

using RL is given in Algorithm 1 and visualized in Figure 3. The

three necessary components are:

(1) Agent oracle: An RL algorithm that, given mixed strategy

z̃𝑒 as a distribution over 𝑍𝑒 , learns an optimal policy 𝜋𝑒 for

the defender to maximize reward in the known environment

described by z̃𝑒 .
(2) Nature oracle: An RL algorithm to compute an alternative

policy 𝜋𝑒 and new environment parameters z𝑒 given the

current agent mixed strategy 𝜋̃𝑒 over all policies Π𝑒 . The

nature oracle’s objective is to maximize regret: the difference

between expected value of alternative policy 𝜋𝑒 and the

agent strategy 𝜋̃𝑒 .

Algorithm 1 MIRROR: MInimax Regret Robust ORacle

Input: Environment simulator and parameter uncertainty set 𝑍

Params: Convergence threshold 𝜀, num perturbations 𝑂

Output: Minimax regret–optimal agent mixed strategy 𝜋̃∗

1: Select an initial parameter setting z0 ∈ 𝑍 at random

2: Compute baseline and heuristic strategies 𝜋𝐵1
, 𝜋𝐵2

, . . .

3: 𝑍0 = {z0}
4: Π0 = {𝜋𝐵1

, 𝜋𝐵2
, . . .}

5: for epoch 𝑒 = 1, 2, . . . do
6: (𝜋̃𝑒 , z̃𝑒 ) = ComputeMixedNash(Π𝑒 , 𝑍𝑒 )
7: 𝜋𝑒 = AgentOracle(z̃𝑒−1)
8: (z𝑒 , 𝜋𝑒 ) = NatureOracle(𝜋̃𝑒−1)
9: if regret(𝜋̃𝑒−1, z𝑒 ) − regret(𝜋̃𝑒−1, z̃𝑒−1) ≤ 𝜀 and r(𝜋𝑒 , z̃𝑒−1) −

r(𝜋̃𝑒−1, z̃𝑒−1) ≤ 𝜀 then
10: return 𝜋̃𝑒
11: for perturbation 𝑜 = 1, . . . ,𝑂 do
12: perturb z𝑒 as z𝑜𝑒
13: 𝜋𝑜𝑒 = AgentOracle(z𝑜𝑒 )
14: Compute expected rewards as r(𝜋𝑒 , z) for all z ∈ 𝑍𝑒−1 and

r(𝜋, z𝑒 ) for all 𝜋 ∈ Π𝑒−1
15: Compute max-regret game payoffs as Equation 2

16: 𝑍𝑒 = 𝑍𝑒−1 ∪ {z𝑒 , z1𝑒 , . . . , z𝑂𝑒 }
17: Π𝑒 = Π𝑒−1 ∪ {𝜋𝑒 , 𝜋𝑒 , 𝜋1𝑒 , . . . , 𝜋𝑂𝑒 }

Ideally, the alternative policy would be the optimal policy

given environment parameters z𝑒 , that is, 𝜋𝑒 = 𝜋∗ (z𝑒 ). How-
ever, given that these RL approaches do not guarantee per-

fect policies, we must account for the imperfection in these

oracles, which we discuss in Section 4.4.

(3) Mixed Nash equilibrium solver: A solver to compute a

mixed Nash equilibrium for each player as a distribution over

Π𝑒 for the agent and over 𝑍𝑒 for nature in the max-regret

game defined in Definition 1.

The MIRROR procedure would unfold as follows. We begin with

arbitrary initial parameter values z0 and baseline strategies. The

agent then learns a best-response defender policy 𝜋1 against these

initial parameter values. Nature responds with z1. We update the

payoff matrix in the max-regret game, add the best response strate-

gies 𝜋𝑒 and z𝑒 to the strategy sets Π𝑒 and 𝑍𝑒 for the agent and

nature respectively, and continue until convergence. Upon conver-

gence (line 10), we reach an 𝜀-equilibrium in which neither player

improves their payoff by more than 𝜀.

In many double oracle settings, the process of computing a best

response is typically fast, as the problem is reduced to single-player

optimization. However, the nature oracle is particularly challenging

to implement due to our objective of minimax regret. Additionally,

the imperfect nature of our oracles implies we are not guaranteed

to find exact best strategies. We discuss our approaches below.

4.1 The Agent Oracle
We want to find the best policy in a given environment setting.

In our specific setting of poaching prevention, we consider deep

deterministic policy gradient (DDPG) [22]. Policy gradient methods

allow us to differentiate directly through a parameterized policy,

making them well-suited to continuous state and action spaces,
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Figure 3: Our MIRROR algorithm, with figure design inspired by the double oracle figure from Bošanskỳ et al. [4].

Algorithm 2 Nature Oracle

Input: Agent mixed strategy 𝜋̃ ∈ Δ(Π)
Parameters: Wake–sleep frequency 𝜅, num episodes 𝐽

Output: Nature best response environment parameters z and
alternative policy 𝜋

1: Randomly initialize z and 𝜋
2: for episode 𝑗 = 1, 2, . . . , 𝐽 do
3: Sample agent policy 𝜋 ∼ 𝜋̃

4: for timestep 𝑡 = 1, . . . ,𝑇 do
5: if 𝑗 mod 2𝜅 = 0 then Unfreeze 𝜋 and z
6: else if 𝑗 mod 𝜅 = 0 then Freeze 𝜋 parameters

7: else Freeze z parameters

8: Update 𝜋 and z using gradient ascent to maximize regret:

r(𝜋, z) − r(𝜋, z)
9: return z, 𝜋

which we have. Note again that MIRROR is agnostic to the specific

algorithm used. DDPG specifically is not necessary; technically,

the approach need not be RL-based as long as it enables efficient

computation of a best response strategy.

We initialize the agent’s strategy set Π with the baseline algo-

rithms, described in Section 6. Other heuristic strategies, based on

expert knowledge from the rangers, could be added as part of the

initialization.

4.2 The Nature Oracle
Learning the nature oracle is one of the key challenges. Our

insight is that the nature oracle’s task is to perform the same task as

the agent oracle, combined with the (non inconsequential) task of

learning the optimal environment parameters, made difficult by the

minimax regret criterion. The nature oracle may use a similar RL

setup as the agent oracle, but we now face the challenging task of

updating both the alternative policy 𝜋 as well as the environment

parameters z — and the setting of z changes both the rewards of

the policies 𝜋 and 𝜋 .

An initial approach might be to use two separate optimizers, one

to train 𝜋 and another to learn z. However, as the environment

parameters z and the alternative policy 𝜋 are strongly correlated,

optimizing them separately would lead to sub-optimal solutions.

Therefore, we integrate z and 𝜋 in the same actor and critic net-

works in DDPG and optimize the two together.

Our approach for the nature oracle is given in Algorithm 2.

Similar to the agent oracle, we use policy gradient to learn the

alternative policy 𝜋 , which enables us to take the derivative directly

through the parameters of 𝜋 and z to perform gradient descent.

Note that the input to the DDPG policy learner is not just the state

s(𝑡 ) = (a(𝑡−1) ,w(𝑡−1) ) but also attractiveness: (z, a(𝑡−1) ,w(𝑡−1) ).
Ideally, we would incrementally change the parameters z, then
optimally learn each time. But that would be very slow in practice,

requiring full convergence of DDPG to train 𝜋 at every step. We

compromise by adopting a wake–sleep procedure [13] where we

alternately update only 𝜋 , only z, or both 𝜋 and z together. We

describe the procedure in lines 5–7 of Alg. 2, were 𝜅 is a parameter

controlling the frequency of updates between z and 𝜋 .

4.3 Mixed Nash Equilibrium Solver
We solve for the mixed Nash equilibrium in the max-regret game

with the support enumeration algorithm [35], a solution approach

based on linear programming, using the Nashpy implementation

[16]. There may be multiple mixed Nash equilibria, but given that

the game is zero-sum, we may take any one of them as we discuss

in Section 5.

4.4 Parameter Perturbation
Ideally, the learned alternative policy would be the optimal policy

given environment parameters z, that is, 𝜋 = 𝜋∗ (z). However, the
RL approaches do not guarantee perfect policies. With RL oracles,

we must consider the question: what to do when the oracles (in-

evitably) fail to find the optimal policy? Empirically, we observe that

for a given environment parameter setting z, the policy 𝜋 learned

by DDPG occasionally yields a reward r(𝜋, z) that is surpassed by

another policy 𝜋 ′
trained on a different parameter setting z′, with

r(𝜋, z) < r(𝜋 ′, z). So clearly the defender oracle is not guaranteed

to produce a best response for a given nature strategy.

Inspired by this observation, we make parameter perturbation a

key feature of our approach (Algorithm 1 lines 11–13), inspired by

reward randomization which has been successful in RL [38, 39]. In

doing so, we leverage the property that, in theory, any valid policy

can be added to the set of agent strategies Π𝑒 . So we include all of



the best responses to perturbed strategies by the nature oracle (see

Figure 3 for an illustration), which enables us to be more thorough

in looking for an optimal policy 𝜋∗ for each parameter setting as

well as find the defender best response. In that way, the double

oracle serves a role similar to an ensemble in practice.

Parameter perturbation is grounded in three key insights. First,

the oracles may be imprecise, but evaluation is highly accurate

(relative to the nature parameters). Second, we only have to eval-

uate reward once, then max regret can be computed with simple

subtraction. So the step does not add much computational overhead.

Third, adding more strategies to the strategy set comes at relatively

low cost, as computing a mixed Nash equilibrium is relatively fast

and scalable. Specifically, the problem of finding an equilibrium in

a zero-sum game can be solved with linear programming, which

has polynomial complexity in the size of the game tree. Thus, even

if the oracles add many bad strategies, growing the payoff matrix,

the computational penalty is low, and the solution quality penalty

is zero as it never takes us further from a solution.

5 CONVERGENCE AND CORRECTNESS
We prove that Algorithm 1 converges to an 𝜀–minimax regret op-

timal strategy for the agent in a finite number of epochs if the

uncertain Markov decision process (UMDP) satisfies a technical

condition. The key idea of the proof is to exploit the equivalence of

the value of the max-regret game and the minimax regret–optimal

payoff in the UMDP. For these quantities to be equivalent, the max-

regret game induced by the UMDP must satisfy a variant of the

minimax theorem. Two broad classes of games that satisfy this con-

dition are games with finite strategy spaces and continuous games;

we show that the green security model of Section 3.2 induces a

continuous max-regret game.

We begin by observing that the lower value of the max-regret

game is equal to the payoff of the minimax regret–optimal policy

of the UMDP. Using Definition 1, we can write the lower value of
the max-regret game as:

𝑣 = max

𝜋̃
min

z̃

(
r(𝜋̃, z̃) − r(𝜋̃∗ (z̃), z̃)

)
(7)

which is algebraically equivalent to Equation 1 by the definition of

𝜋̃∗ and rearrangement.

The connection between the lower value and the payoff received

by the row player is well known in games with finite strategy spaces

as a consequence of the seminal minimax theorem [28]. However,

no such result holds in general for games with infinite strategy

spaces, where a mixed Nash equilibrium may fail to exist. For so-

called continuous games, Glicksberg [11] shows that a mixed Nash

equilibrium exists and the analogy to the minimax theorem holds.

Definition 2. A game is continuous if the strategy space for each

player is non-empty and compact and the utility function is contin-

uous in strategy space.

We formalize the required connection in Condition 1, which

holds for both finite and continuous games.

Condition 1. Let (𝜋̃, z̃) be any 𝜀–mixed Nash equilibrium of the
max-regret game and 𝑣 be the lower value of the max-regret game.
Then, |𝑣 − (r(𝜋̃, z̃) − r(𝜋̃∗ (z̃), z̃)) | ≤ 𝜀.

We show that our green security UMDP induces a continuous

max-regret game.

Proposition 1. The max-regret game induced by the model of
Section 3.2 is continuous.

Proof. The defender’s strategy space consists of an action in

[0, 1]𝑁 responding to each state. Because each action is compact,

the defender’s strategy space is compact. Nature has a compact

uncertainty space. Both are non-empty.

The defender’s expected reward in the max regret game (Defini-

tion 1 and Equation 6) can bewritten as a composition of continuous

functions: addition, multiplication, the max (required to compute

max regret), the logistic function (required for Equation 4), and

exponentiation (Equation 5). The composition of these functions is

also continuous. □

We now prove the main technical lemma: that the defender

oracle and the nature oracle calculate best responses in the max-

regret game. Doing so implies that the mixed Nash equilibrium

returned by Algorithm 1 in the final subgame over finite strategy

sets (Π𝑒 , 𝑍𝑒 ) is an 𝜀–mixed Nash equilibrium of the entire max-

regret game. This result allows us to apply Condition 1, showing

equivalence of the lower value of the max-regret game and the

minimax regret–optimal payoff.

Lemma 1. At epoch 𝑒 , policy 𝜋𝑒 and environment parameters z𝑒
are best responses in the max-regret game to mixed strategies z̃𝑒 and
𝜋̃𝑒 , respectively.

Proof. For the nature oracle, this is immediate because the re-

ward of the nature oracle is exactly the payoff nature would receive

in the max-regret game when playing against 𝜋̃𝑒−1. For the agent
oracle, the expected payoff of a strategy 𝜋 against z̃𝑒−1 in the max-

regret game is Ez∼z̃𝑒−1 [r(𝜋, z) − r(𝜋∗ (z), z)]. Because r(𝜋∗ (z), z)
does not depend on 𝜋 , the policy that maximizes Ez∼z̃𝑒−1 [r(𝜋, z)]
maximizes the agent’s utility in the max-regret game. This quantity

is exactly the reward for the agent oracle. □

Theorem 2. If Condition 1 holds and Algorithm 1 converges, the
agent mixed strategy returned by Algorithm 1 achieves a minimax
regret that is at most 𝜀 less than the minimax regret–optimal policy.
If the max-regret game is either continuous with 𝜀 > 0 or finite,
Algorithm 1 converges in a finite number of epochs.

Proof. Because the convergence condition for Algorithm 1 is

satisfied, (𝜋̃𝑒 , z̃𝑒 ) is an 𝜀–mixed Nash equilibrium in the max-regret

game by Lemma 1. Applying Condition 1 yields the result that the

payoff of 𝜋̃𝑒 is within 𝜀 of the minimax regret–optimal policy of

the original UMDP.

If the max-regret game is finite, there are only finite number of

strategies to add for each player and each strategy may be added

only once—thus, Algorithm 1 converges in finitely many epochs. If

the max-regret game is continuous, Theorem 3.1 of [1] guarantees

convergence in finite epochs due to Lemma 1. □
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Figure 4: Comparing performance across varied settings, our MIRROR algorithm leads to the lowest max regret in all settings.
We evaluate max regret by calculating the average reward difference between the selected policy and the optimal policy, with
reward averaged over 100 episodes. We use as the default setting is 𝐻 = 5, 𝑁 = 25, 𝛽 = 5, random wildlife initialization, 𝐵 = 5,
and uncertainty interval 3. Standard error shown averaged over 30 trials.

6 EXPERIMENTS
We conduct experiments using a simulator built from real poaching

data from Queen Elizabeth National Park in Uganda, based on our

analysis in Section 3.1. We consider robust patrol planning in the

park with 𝑁 = 25 to 100 targets representing reasonably the area

accessible from a patrol post. Each target is a 1 × 1 km region.

We compare against the following baselines. Middle computes

an optimal defender strategy assuming the true value of each pa-

rameter is the middle of the uncertainty interval. Random takes a

random strategy regardless of state. We apply the same parameter

perturbations to the baselines as we do to the others and report

the top-performing baseline variant. We evaluate performance of

all algorithms in terms of maximum regret, computed using the

augmented payoff matrix (with baselines and perturbed strategies)

described in Section 4. The max regret is calculated by determining,

for each parameter value, the defender strategy with the highest

reward. In every experiment setting, we use the same strategy sets

to compute max regret for all of the approaches shown. Note that

we would not expect any algorithm that optimizes for maximin

reward to perform significantly better in terms of max regret than

the middle strategy due to the regret criterion.

Figure 4 shows the performance of our MIRROR algorithm com-

pared to the baselines. Across variations of episode horizon, park

size, deterrence strength, wildlife initial distributions, budget, and

uncertainty interval size, MIRROR significantly reduces max regret.

Deterrence strength changes the value of 𝛽 in Equation 4 to reveal

the potential effectiveness of our actions. The wildlife initializations

options are a uniform random distribution, a peaked Gaussian ker-

nel (representing a core animal sanctuary in the park center), and

a flatter Gaussian kernel (representing animals distributed more

throughout the park, although more concentrated in the center).

The uncertainty interval size restricts the maximum uncertainty

range 𝑧𝑖 − 𝑧𝑖 for any target 𝑖 .

One of the most notable strengths for MIRROR is shown in Fig-

ure 4(a). As the episode horizon increases, thus the defender is

tasked with planning longer-term sequences of decisions, MIRROR

suffers only mildly more regret while the regret of the baseline

strategies increases significantly. The scalability of MIRROR is fur-

ther evidenced in Figure 4(b) as our relative performance holds

when we consider larger-sized parks.

Our strong empirical performance offers promise for effective

real-world deployment for MIRROR. Uncertainty in the exact en-

vironment parameters is one of the most prominent challenges

of sequential planning in the complex real-world setting of green

security.

7 CONCLUSION
Our work is the first, across artificial intelligence and conservation

biology literature, to show ranger patrols do deter poachers on

real-world poaching data. Following this finding, we identify the

problem of sequential planning for green security that is robust to

parameter uncertainty following the minimax regret criterion, a

problem that has not been studied in the literature. We address this

challenge with our novel RL-based framework, MIRROR, which

enables us to learn policies evaluated on minimax regret. We show

the strength of MIRROR both theoretically, as it converges to an

𝜀–max regret optimal optimal strategy in finite iterations, and em-

pirically, as it leads to low-regret policies. We hope that our results

inspire more work in green security based on our realistic adversary

model and that our MIRROR framework is useful for future work

on learning RL-policies that are optimal under minimax regret.
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