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ABSTRACT
The COVID-19 pandemic has had a significant and unprecedented
impact on the world since 2020. Concurrently, the rise of internet
technology has led to the development of several significant data
sources for forecasting the development of the pandemic, includ-
ing but not limited to mobility data, crowdsourced symptoms, and
search trends. While there has been significant algorithmic interest
in developing forecasting models, previous work has not provided
a systematic investigation of the relative utility of different data
sources for COVID-19 forecasting. We present the first work com-
paring internet data sources for use in deep learning models to
predict case incidence of COVID-19 across states the US. Our work
affirms the relative utility of incidence and mobility data, which
closely models the epidemiological interactions, compared to search
trends and crowdsourced survey data, which encourage overfitting
of deep learning models.
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1 INTRODUCTION
The World Health Organization declared the novel coronavirus
disease (COVID-19) as a global pandemic on March 11th, 2020
[24]. As of February 25th, 2021, over 110 million cases have been
reported globally, with over 28 million cases and 500,000 deaths in
the United States (US). The economic impact of the pandemic has
also disproportionately affected women and the socioeconomically
disadvantaged [19]. Furthermore, the pandemic has exacerbated
critical healthcare infrastructure in the US, especially evidenced
by the shortage of personal protective equipment and available
hospital ICU beds [25].
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Given these impacts, predicting the spread of epidemics is essen-
tial to mounting an appropriate public health response. A predictive
model is only as good as its underlying data sources and so under-
standing the role played by different data sources is an important
digital epidemiology question. More nuanced comparisons can help
guide the development of predictive models, as well as inform
priorities for the development of new data sources. In the past, fore-
casting has targeted seasonal diseases (such as influenza) or else
more localized outbreaks (e.g., dengue, Ebola, or Zika). In response
to these outbreaks, traditional forecasting utilizes epidemiological
data – such as patient-level data or aggregated data regarding cases,
hospitalizations, and deaths, from local authorities – to understand
the spread of disease. In recent years, Internet-based digital epi-
demiological data in the form of social media posts, search engine
queries, and online surveys has proven valuable for predicting the
spread of epidemics [16, 27]. In particular, the historical and large
volume of data available from rich data sources has spurred a rise
in deep learning-based approaches to epidemiological forecasting
[43].

However, predicting the spread of COVID-19 is fundamentally
different than predicting other smaller-scale seasonal and local
outbreaks due to its unprecedented impact on the operation of
our society. While previous work has built a range of systems
for predicting COVID-19 cases, to our knowledge, a systematic
investigation of the promises and pitfalls of using different data
sources in this forecasting task does not currently exist. In particular,
COVID-19 has prompted both the usage of both existing digital data
sources (e.g., search trends data [17]) as well as the introduction of
new data sources such as mobility data collected from smartphones.
While a large number of predictive models have been developed
to forecast COVID-19 outbreaks, there has been little systematic
effort to understand the extent to which these new and emerging
data sources contribute to prediction specifically in the COVID-19
context.

A range of characteristics differentiate COVID-19 from the out-
break settings studied in earlier predictive work, potentially altering
the role that different data sources may play:

• Lack of historical data: Deep learning models benefit from
a significant volume of data, for example training on several
historical influenza seasons. Due to the emerging nature of
COVID-19, there is no historical data to supplement data



from the current pandemic. While, this limitation can be
addressed by combining insights from several geographic
regions [14, 17], it is nevertheless possible that the compara-
tively smaller amount of data available for COVID-19 could
reduce the ability to learn complex models.

• Prominent coverage and interest: Unlike typical seasonal
outbreaks or established diseases, developments about COVID-
19 are well-reported by the media and followed by the public.
Specific changes in public policy also significantly affect the
spread of the disease, including mask mandates, social dis-
tancing, and indoor dining restrictions [46]. These public
policy shifts are likely to register in local and national search
trends as the public seeks more information about them.
However, prominent media coverage also has significant
downsides. For example, in the “worried well" phenomenon,
excessive media coverage or misinformation about particu-
lar topics could result in healthy individuals over-reporting
COVID-19 symptoms [36]. It is unclear whether digital data
sources will become more or less reliable in this environ-
ment.

• Stronger signals fromparticipatory surveys: The COVID-
19 pandemic is of international importance, which may help
overcome limitations in participation and selection bias pre-
viously documentedwith crowdsourcing symptoms of influenza-
like illness (ILI) [34].

• Novel Data Sources: Newer data sources have emerged
due the scale of the COVID-19 pandemic, including those
pertaining to mobility, contact tracing, and social distancing
metrics. Part of the objective of this study is to systematically
evaluate the utility of these new signals.

In light of these opportunities and challenges, several data sources
have emerged as candidates to inform the prediction of disease inci-
dence on a localized level: Google Trends, participatory health sur-
veys, mobility data, hospitalization information, andmore [5, 13, 32].
Indeed, the COVID-19 Forecast Hub, which aggregates the predic-
tions of over 20 leading models, shows a wide range of data sources
in current use [7]. However, no previous work has provided a di-
rect comparison of the utility of these data sources in COVID-19
forecasting. This study makes the following contributions:

• We systematically compare the success of a deep learning
model at predicting COVID-19 outbreaks using a range of
data sources representative of those in current use: incidence
data supplemented by any of mobility data, search trends
data, and crowd-sourced symptom reports. This allows us to
assess the additional value provided by digital data sources
above and beyond basic incidence reports.

• Wefind that the best-performingmode uses only the incidence
data. Performance decreases with the inclusion of any of the
digital data sources.

• We study potential explanations for this phenomenon. Ex-
amination of the train vs test performance of the models,
alongside an investigation of feature importances, suggests
that COVID-19 models are particularly susceptible to over-
fitting, potentially due to the limited amount of available
training data. The inclusion of additional data sources can

thus pose an unfavorable bias-variance tradeoff by increas-
ing the number of parameters required in the model.

Overall, our results highlight the need for careful curation of
the data sources used in COVID-19 forecasting, and for outbreak
prediction more broadly. More data is not necessarily better, if
additional data sources contain only marginal or noisy signal which
the model can easily overfit to. Particularly when model simplicity
is at a premium, it is necessary to develop a detailed understanding
of the potential biases in input data sources (e.g., debiasing search
trend data to account for the effects of media coverage [17]) since
models can easily overfit to extraneous patterns in an input signal.

2 RELATEDWORK
There has been significant work exploring the use of mechanistic,
statistical, and deep learning models for predicting the spread of
past epidemics. For example, Volkova et al. utilized long short-term
memory (LSTMs) networks to predict ILI in military populations
using social media communication and topics [41]. Venna et al.
used similar methods but focused on geographic proximity and
environmental variables as the data source [40]. Zou et al. utilized
Google search data to predict weekly incidence of ILI [47]. Several
authors use mechanistic models, especially susceptible-exposed-
infected-recovered (SEIR) models, for their ability to represent the
underlying transmission dynamics and interactions [23, 28].

Forecasting for COVID-19 is an incredibly active area of research,
with a wide range of models in development. The COVID-19 Fore-
casting Hub [7] provides an overview of many of the models in
current use. These models vary in the data sources used as input.
However, one category of data source, introduced uniquely in re-
sponse to COVID-19, is mobility data. Several studies have utilized
the rise in access to this data to predict COVID-19 incidence, study
dynamics of the pandemic, and understand the impact of public
policy decisions [4, 12, 15, 42, 44].

More broadly, the common approach of incorporating several dis-
tinct data streams into a forecast for COVID-19 combines method-
ology explored in the time series prediction community. Long short-
term memory networks have historically shown incredible promise
in time-series prediction across a variety of tasks [10, 20, 21]. Sev-
eral LSTM-based approaches have been implemented to forecast
COVID-19 across different geographies, ground truths, and data
streams [3, 30, 45]. Jin et al. leverages similar methods of learn-
able detrending to predict cases, deaths, and hospitalizations at
the US state level from demographics, mobility indices, and health
interventions [14].

Overall, previous work focuses on advancing model design and
implementation when applied to epidemic forecasting, largely over-
looking the question of the utility of data sources compared to each
other under a fixed learning framework. One counterexample is
work by Samaras et al., who explored the utility of search trends ver-
sus social media for predicting influenza in Greece [29]. However,
explicit comparisons of the utility of data sources is a comparatively
understudied topic in outbreak prediction which has been rendered
only more important by the changes to the forecasting environment
induced by COVID-19.



3 METHODS
3.1 Data Sources and Processing
Data utilized in this study spanned from March 30th, 2020 to Sep-
tember 20th, 2020, representing the activity of populations in the
US at the state level. Ultimately, 144 features were utilized across
four major data sources, as described below. Unnormalized and
unprocessed, the magnitude of data considered varied considerably
over time, reflecting the exponential growth of the pandemic.

3.1.1 Participatory Survey Data. Crowd-sourced data for moni-
toring the spread of infectious diseases has been recognized as a
valuable resource as early as 2013 [6]. For this study, we utilized
data collected through the Outbreaks Near Me platform (previously
COVID Near You, abbreviated CNY), which has anonymously sur-
veyed over 5 million individuals about their COVID symptoms and
behavior as of February 25th, 2021 [1].

The CNY data was represented as a percent of the total popu-
lation of each state, as per the official 2020 United States Census
Bureau estimates, to contextualize the magnitude of the aggregated
responses against the total patient volume of a state [2].

3.1.2 Google Health Trends. Online search data was obtained from
Google Health Trends, a private API that provides daily absolute
query volume of keywords across geographic regions. Keywords
were chosen via exploration through Google Trends with the cri-
teria of significant volume in the US during the dates of the study.
Due to the magnitude of the data, values were logarithmized prior
to training.
COVID-19: General keywords related to the pandemic represent
public interest in the virus, including: "social distancing", "mask
mandate", "covid testing center", and "trump covid".
Symptoms: Keywords in this category included "loss of smell and
taste", "fever", "persistent cough", and other symptoms of COVID-19
as defined by the Centers for Disease Control and Prevention (CDC)
guidelines [9].
COVID-19 progression: Keywords included combinations of COVID-
19 symptoms according to likely disease progression according to
work conducted by Larsen et al. [18]. Notably, the progression of
COVID-19, typically beginning with a fever, differs from other res-
piratory tract infections and may provide insight to undiagnosed
cases [18]. Examples include "fever then cough" and "fever then
cough then nausea and vomiting".
Panic: Previous research conducted on public behavior indicated
the role of political statements, media coverage, and misinformation
on panic buying [26, 39]. Relevant keywords to represent consumer
behavior include "toilet paper shortage" and "bleach coronavirus".
Protection: Especially as the pandemic progressed, safety and in-
terest in preventative measures, such as mask-wearing and social
distancing, as well as treatments, including monoclonal antibodies
and vaccines, shifted. Keywords relevant to protection and treat-
ment included "n95 mask covid", "flu vaccine", and "vaccine covid19".

Other Keywords: As the scope of this study was limited to the
US, other specific factors may represent the public’s willingness

to follow preventative measures, including: "stimulus bill", "covid
election", "anthony fauci".

3.1.3 Mobility Data. The Delphi Epidata API provides data on the
spread and impact of COVID-19 on the United States at various
geographic levels [8]. This study utilized public behavior (mobility
less than 3, 3-6, and 6+ hours a day away from home and median
at-home time) and COVID-related doctors’ visits data signals.

3.1.4 Population, Incidence, and Other Data. COVID-19 incidence
data is publicly available from The New York Times, based on
reports from state and local health agencies [38]. This information
was utilized as the ground truth number of cases over time, as well
as a feature for the number of confirmed deaths due to the virus.

3.2 Problem Formulation
Predicting incidence of COVID-19 cases in the US is formulated
as a regression task with multiple time series as input features.
Predicting incidence for each state constitutes its own regression
task.

• x𝑖𝑡 is the value of the 𝑖th input series at time step 𝑡 .
• y𝑖𝑡 is the value of the ground truth (i.e., the number of new
cases) at time step 𝑡 .

• 𝑚 is the number of historical time steps (i.e., size of the
input window) utilized to predict 𝑛 time steps (i.e., size of
the prediction window) in the future. 𝑇 is the total number
of time steps available for learning.

We now develop a representative example of a deep learning-
based model for COVID-19 forecasting, which will be used to test
the impact of including different sources of data.

3.3 Learnable Detrending
To remove long-term trends from the input series, we introduced
four learnable parameters 𝜃𝑖 per feature 𝑖: the initial level 𝑎𝑖0, the
initial trend 𝑏𝑖0, the level smoothing coefficient 𝛼𝑖𝑡 , and the trend
smoothing coefficient 𝛽𝑖𝑡 [35]. These parameters were updated using
Holt’s equations [11]:

𝑎𝑖𝑡 = 𝛼𝑖x𝑖𝑡 + (1 − 𝛼𝑖 ) (𝑎𝑖𝑡−1 + 𝑏
𝑖
𝑡−1),

𝑏𝑖𝑡 = 𝛽𝑖 (𝑎𝑖𝑡 − 𝑎𝑖𝑡−1) + (1 − 𝛽𝑖 ) (𝑏𝑖𝑡−1),
(1)

Utilizing these constants, the residual input series following de-
trending was

x̂𝑖𝑡 = x𝑖𝑡 − 𝑎𝑖𝑡 (2)
A detrending module predicting the level and trend coefficients
from the input series was applied to each state’s series to produce
coefficients 𝜃𝑠 for each US state 𝑠 .

3.4 Normalization
The residual input series 𝑥𝑖𝑡 were separated into rolling input and
prediction windows of size𝑚 and 𝑛, respectively. The magnitude
of the series in these windows still may vary in magnitude, so min-
max normalization was applied to their cumulative time time series.
Specifically, over a window from 𝑡1 to 𝑡2:

𝑠𝑖𝑡 =

𝑡∑
𝑎=𝑡1

x̂𝑖𝑎, 𝑠𝑖𝑡 =
𝑠𝑖𝑡 − 𝑠𝑖𝑡1

𝑠𝑖𝑡2
− 𝑠𝑖𝑡2

(3)



This data transformation constrains the input series to a monotoni-
cally increasing series between 0 and 1 over the input window.

3.5 Joint Training
A LSTM model was trained on the normalized input series 𝑠𝑡−𝑚:𝑡
to predict ŷ𝑡 :𝑡+𝑛 , an estimate of the residual values for the ground
truth over the prediction window. This prediction task was specific
to each state, as state-specific detrending coefficients were predicted
from each state’s data.

These predicted residual values are added to x̄𝑖𝑡 :𝑡+𝑛 , the linear
extrapolation of the long-term trend, calculated as a linear combi-
nation of the relevant level and trend coefficients:

x̄𝑖
𝑡+𝑘 = 𝑎𝑖𝑡 + ℎ · 𝑏𝑖𝑡 (4)

Ultimately, the loss function is represented as

𝐿(𝑦,𝑦) = 𝐸 (x𝑡 :𝑡+𝑛, x̄𝑖𝑡 :𝑡+𝑛 + ŷ𝑡 :𝑡+𝑛) (5)

where the error function 𝐸 was chosen to be Mean Squared Error
(MSE).

4 RESULTS
To best utilize the available data, we selected an input window of 14
days and prediction window of 7 days. Training data was generated
through rolling windows across all 50 US states from Day 0 to 130
and the remaining days (131 to 178) were reserved as the testing
dataset for evaluation and comparison.

Following a search over several characteristics, the bolded hy-
perparameters were chosen on the basis of lowest testing MSE.

• LSTM layers: 1, 2, 3
• LSTM hidden size: 100, 200, 300
• Learning rate: 0.001, 0.005, 0.01
• Batch size: 25, 50, 75

Due to the fundamentally different data distributions between
the training and testing sets, we experimented across several meth-
ods for regularization andmodel design: batch normalization, dropout
(𝑝 = 0, 0.2, 0.3, 0.4) and L2 regularization (1e-4, 1e-5) between linear
layers, L2 Regularization on the weights of the LSTM and Linear
layers, and Epochs of training (30-60).

The best model over the hyperparameters and models was se-
lected using the lowest MSE loss on the test set (as opposed to a
validation set) at the end of the training period. Specifically, due
to the limited available data (178 days) and the bias towards more
interesting, non-exponential case patterns towards the end of the
dataset, it was not possible to temporally split the data into mean-
ingful training, validation, and test sets. In fact, creating a validation
set would bias the "best performing" model towards a simpler model
fitting to a training set of predominantly exponentially growing
daily case counts.

4.1 Ablation Study
To understand the relative importance of different features and
learning components, components of the pipeline were selectively
included and excluded to understand the overall effect on end pre-
dictive ability.

Table 1: Final train and testMSE for each trainedmodel after
30 epochs (averaged across the batch size of 50).

Data Subset Train Test MSE Final Test MSE

All Data 7.0743 20.5065
Incidence Only 10.6059 16.1173
GHT+Incidence 3.8364 19.8716
CNY+Incidence 4.6599 20.0045

COVIDcast+Incidence 7.9918 18.0743
GHT+CNY+Incidence 3.645 20.417

CNY+COVIDcast+Incidence 3.9455 19.7069
GHT+COVIDcast+Incidence 6.9754 21.7014

Incidence data (specifically, case counts) was a key component
of the learnable detrending process, and therefore was present in
all the datasets.

(a) MSE on the train dataset for models trained on the different data
subsets.

(b) MSE on the test dataset for models trained on the different data sub-
sets. Every 20 training batches, the model was evaluated on the entire
test set.

Figure 1: Training and test set loss curves for each of the
experiments during training.

Figure 2 shows windows from the test set with results from all
the models.

A few interesting trends are evident from the training and test-
ing performance of the different models. The first is that more
data didn’t necessarily help the model achieve lower MSE on the



prediction task: there is a consistent trend of data sources com-
bined together to produce a trained model with equal to or worse
performance than the original data source alone.

In addition, the models that perform best on the test set (Inci-
dence, COVIDcast+Incidence) perform worse on the training set.
Similarly, models that perform better on the train set significantly
overfit to this subset of data as evidenced by the difference in train
and test loss. This hypothesis of overfitting is strengthened by the
data in Table 1.

Figure 2 shows four columns of example data from the test set
where data is fluctuating, trending upward, trending downward,
and showing other patterns, respectively , each with a different
performance from the different models. There are numerous exam-
ples of agreement between the models, even when their collective
prediction was far from the ground truth.

4.2 Feature Importance
We used the SHAP (SHapley Additive exPlanations) library, a promi-
nant explainability method for deep learning which uses a game
theoretic approach to explain the output of a machine learning
model, to understand the relative importance of the 144 features in
the model[22]. A SHAP value for a feature represents the model’s
expected prediction when conditioning on that feature [22]. Specif-
ically, for this application we transformed our model using the
GradientExplainer, which uses expected gradients to approximate
SHAP values [22, 33, 37].

Figure 3: Mean SHAP values for each feature for each time
step in the prediction window (denoted in the legend as
"class") across the combined test set.

Figure 3 shows the relative SHAP values of the top 20 features
explaining the output of the model across the 7-day predictive
window. The features highlighted by SHAP generally fall into one
of several general categories:

• Physical indicators (7 of 20): Mobility metrics, primarily
fraction of the population at home 3-6 and 6+ hours of the
day, dominated 5 of the 20 top features. Related physical
indicators, such as doctors visits and

• COVID-19 symptoms (6 of 20): Features across all types of
symptom features were significant to the model, from less
common symptoms (myalgia) to common symptoms (runny
or stuffy nose) to progression of symptoms (fever then cough
then ...).

• Significant events (4 of 20): The presence of temporally-
specific features (such as "trump covid", which spiked at
the beginning of the pandemic and when President Trump
was diagnosed with the virus in October and "bleach covid",
which coincided with panic purchasing of disinfectants at
the beginning of the pandemic) indicate the model’s reliance
on significant events for benchmarking. This reliance on
features with high variance may allude to the reasons the
model with all data sources overfit to the training set.

• Public health (3 of 20): Interest in preventative measures and
general health (advil face shield, indoor dining, flu vaccine)

The importance of features across the 7-day prediction window
incidates a reliance on different features for short-term trends ver-
sus longer-term trends. In particular, shortness of breath appears
to be more important for predicting time steps further out from the
input window based on the ratio of SHAP values in Figure 3. Short-
ness of breath (dyspnea) has been found to be positively associated
with severe progression of COVID-19 and typically occurs later in
the disease’s course [31].

5 DISCUSSION AND CONCLUSION
This work contributes an analysis of the utility of different data
types for epidemiological forecasting, and is notably the first to
do so for COVID-19. We use the framework of a deep learning
model with participatory surveys, mobility, and search trends data
combined with traditional the case and death incidence.

Our results challenge the notion that having more data directly
translates into better performance in an epidemiological prediction
task. Typically, lack of synergy occurs due to the data generating
processes of the data sources. Specifically, two data sources col-
lected with similar generating processes (ex: search trends from
different search engines across many overlapping keywords and
themes) included together in a predictive model may result in lower
model performance than if the more meaningful data source were
included alone. There must also be alignment between the predic-
tion task and the type of data utilized: since the prediction task in
this study was tied to infection dynamics, it is intuitive that the
most instructive features (and best-performing models) were those
relating to incidence and mobility data. A review of the submissions
to the COVID-19 Forecast Hub, a platform aggregating incidence
predictions from across academic, industry, and independent re-
search groups, shows that only two of the top 5 performing systems
utilized data outside of daily new case and deaths [7]. Most of the
high-performing submissions utilized mecahnistic or SEIR models
rather than utilizing significant deep learning approaches [7].

The rigorous testing of the model was limited by the time hori-
zon for which data was available. Expanding the available data and
forming a validation set would allow for better analysis without
sacrificing the generalizability of the model. Especially at the end of
2020, with spikes in cases following the Thanksgiving and Christ-
mas holidays, as well as the ramp-up of vaccination campaigns



Figure 2: Example input window data with prediction window inferences for the 8 trained models. Models are color-coded
with the same scheme as in Figure 1, with the input ground truth in solid grey and the ground truth of the prediction window
in dotted grey.

across the US, challenging and interesting patterns likely emerge
relating the input features and incidence.

5.1 Future Work
Given the framework for analyzing COVID-19-related data, next
steps include identifying and studying the performance across dif-
ferent COVID-19 forecasting tasks, such as adherence to social
distancing measures and daily deaths. In addition, given the nature
of the models with high variance overfitting to extreme values,
future work includes exploring debiasing approaches for the CNY
and GHT data. Finally, other COVID-19 incidence metrics (hospi-
talizations, local testing results) as well as internet data sources
(notably, social media) are of interest for further exploration.
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