
Decentralized reinforcement learning for multi-agent patrol
routing

Avijit Roy

Indian Institute of Technology, Kanpur

Kanpur, India

avijit@iitk.ac.in

Nisheeth Srivastava

Indian Institute of Technology, Kanpur

Kanpur, India

nsrivast@iitk.ac.in

ABSTRACT
We model the placement of first-responder patrol vehicles on a

city map as a multi-agent reinforcement learning problem, where

individual agents learn desirable locations for parking based on

dynamically updated geo-localized emergency call records. The

model is able to outline reasonable patrol locations and routes,

adapting to changes in the geographical pattern of call locations,

and permits optimization of routes accommodating fuel economy

and other cost-based concerns into account in a principled way.

We also present an actual patrolling system we have developed

around this model, and present simulated results comparing it’s

performance vis-a-vis centroid-based patrol location prediction and

judgments made by humans.

KEYWORDS
Reinforcement learning, Multi-Agent System, Path Prediction, Hu-

man Computer Interaction

ACM Reference Format:
Avijit Roy and Nisheeth Srivastava. 2021. Decentralized reinforcement learn-

ing for multi-agent patrol routing . In Proc. of the 20th International Confer-
ence on Autonomous Agents and Multiagent Systems (AAMAS 2021), London,
UK, May 3–7, 2021, IFAAMAS, 9 pages.

1 INTRODUCTION
The urgency of first-response in emergency situations is a critically

important aspect of public services. It is a common adage that,

when you need the police immediately, they tend to be just five

minutes away. Emergency response services (henceforth EMS),

therefore, are tasked with responding as quickly to emergencies

as possible given existing resources [20]. Since existing resources

are increasingly constrained, EMS have to optimize first response

resources intelligently [15].

The problem of optimizing first responder resources is most com-

monly studied in the context of police responses [9]. The need for

firefighting services is too sparse in modern society to necessitate

proactive placement of resources on the part of fire departments,

and the need for emergency medical services is fulfilled by a patch-

work of state and private agencies. Policing, in contrast, remains

the one activity that, across governments, is controlled entirely by

the state, and remains perpetually in high demand.

In the policing context, first responders are usually patrol officers.

The placement of patrol officers is therefore, an important topic of

Proc. of the 20th International Conference on Autonomous Agents and Multiagent Systems
(AAMAS 2021), U. Endriss, A. Nowé, F. Dignum, A. Lomuscio (eds.), May 3–7, 2021, London,
UK. © 2021 International Foundation for Autonomous Agents and Multiagent Systems

(www.ifaamas.org). All rights reserved.

study in criminology [10]. Large-scale field studies attest to a sub-

stantial deterrence effect from placing patrol officers prominently

in known hot spots of criminal activity [21, 25].

Researchers commonly address this problem as one concerning

the optimal design of patrol routes [5, 22], being in turn a sub-

set of the more general multi-agent patrol routing problem [1].

A common underlying premise in theoretical approaches to this

problem is to map the area of interest as a graph, and design walks

on the graphs that ensure that all (or important) vertices of the

graph are visited frequently [11, 26]. Graph partitioning and net-

work flow optimization approaches are commonly used to solve

the problem [8].

However, it is commonly recognized that such deterministic

strategies are not good fits for the underlying problem in policing

contexts [5]. This is for three reasons. One, deterministic fixing of

patrolling schedules permit criminals to reflexively schedule crimes

coordinating with the patrol schedules. Two, these approaches are

not adaptive to situational changes on the ground affecting the

number and distribution of potential first-responders. Three, the

solutions proposed by such methods are frequently considered

excessive and wasteful by practitioners. In any realistic setting

involving motorized patrols, planners want to balance fast response

times with managing fleet fuel consumption [31].

To tackle the problem of reflexive crime scheduling, researchers

have studied patrol planning as two-player zero-sum games [22, 28].

To tackle the problem of adaptation, heuristic-based probabilistic

optimization schemes have been developed, including proposals

deploying genetic algorithms [16] and ant colony optimization [13].

Domain-specific heuristics are used for optimizing police patrols

in [5] and ambulances in [14]. No approaches, to the best of our

knowledge, currently explicitly tackle the problem of managing the

trade-off between response times and patrolling resource consump-

tion.

Reinforcement learning appears to be a natural fit for the multi-

agent patrol routing problem [27], and has in fact been proposed for

this purpose in the literature [24]. However, existing treatments of

this problem using reinforcement learning are noted to be complex,

and seek to optimize the graph-theoretic notion of patrol optimality

that omits several important situational nuances important to real-

world EMS requirements [5].

In this paper, we present a decentralized reinforcement learning

solution for the multi-agent patrolling problem particularized for

the context of policing EMS. Our solution is simpler than previous

reinforcement learning solutions for this task, highly scalable with

respect to the number of patrolling units, and addresses the three

concerns identified above that have bedeviled the adoption of pre-

vious proposals in real-world deployments. Notably, we use call



records from a real police EMS for designing and testing our system,

and present a final solution that is currently being field-tested for

adoption within the same real-world EMS.

2 DECENTRALIZED REINFORCEMENT
LEARNING FOR MULTI-AGENT PATROL
ROUTE PLANNING

Reinforcement learning is a natural setting for the multi-agent

patrolling problem, balancing exploration of an unknown environ-

ment with performing actions assigned high rewards by the system

designer. The notion of states, actions and rewards maps easily to

geographical locations, patrol movement and emergency calls in

this problem domain. Traffic congestion adds dynamic uncertainty

to the state transition probability, and the varying criticality of

calls received from different locations make it more realistic to

treat rewards as unknown. Thus, it seems reasonable to model the

multi-agent patrolling problem using reinforcement learning.

Ideally, we would like multiple agents to coordinate their activity

in jointly beneficial ways. A centralized view of the multi-agent

problem as a single agent with multiple actuators is attractive for

its theoretical simplicity, but is practically infeasible because of the

exponential growth in the state space with the number of patrolling

units [3]. Sophisticated approaches for finding globally optimal

solutions for a cooperative group of agents are known, but are

infeasible because of quadratic growth in the number of communi-

cations needed to coordinate an increasing number of patrolling

units [2].

Thus, realistically, we are restricted to solving the problem in a

decentralized manner, considering each of the patrolling units to

be ‘independent learners’ [6]. Notably, it is known that for a wide

variety of settings, independent learners tend to do just as well or

even better than more coordinated ‘joint action learners’ [6].

The use of independent learners in the multi-agent setting in-

troduces both theoretical and practical difficulties [19]. In theory,

since the action of any agent in the previous time step can influence

any other agent’s action in the next time step, the system cannot be

described as Markovian in the true sense. In a practical sense, this

problem boils down to how to get agents to identify local policies

that don’t cause them to get in other agents’ way.

Theoretical analyses of these problems have revealed that the dif-

ficulties are not as formidable as they may seem. Claus & Boutilier

have reported that independent learners fare no worse than joint

action learners in terms of convergence to the globally optimal so-

lution [6]. In Lauer & Riedmiller’s optimistic distributed Q-learning

algorithm, all penalties due to non-coordination of agents are ig-

nored in each individual agent’s update. Their algorithm still finds

the global optima in deterministic cooperative multi-agent sys-

tems [17] and, with minor alterations, does quite well in stochastic

settings also [18]. Additionally, practical applications of decentral-

ized reinforcement learning simply update each agent’s policy using

Q-learning assuming the other agents don’t exist, and still achieve

reasonable performance [7].

Thus, while the theoretical problems facing decentralized re-

inforcement learning remain formidable, cumulative experience

shows the existence of considerable emergent self-coordination in

even the simplest practical implementations, a fact beginning to

find support in theory as well [30]. We, for our part, attempt to solve

the coordination problem by embedding a proximity penalty for

our independently learning agents, as we describe further below.

3 IMPLEMENTATION
In this section we describe the actual implementation of our ap-

proach. At the very outset, it is important to provide background

into the situational grounding of our project. We have designed

the system described below specifically to assist in planning patrol

vehicle locations for a fleet of about 3600 patrol vehicles possessed

by one of the largest police departments under a single command

in the world, responsible for providing emergency first response

services for a very large population. The emergency dispatch unit

of this department handles upwards of 50000 calls per day, resulting

in approximately 5000 effective patrol vehicle dispatch requests

per day. The vehicles in this fleet currently move an average of 20

kms per vehicle per day, resulting in a fuel cost of approximately

$ 105 million per year (purchasing power parity adjusted to 2015

USD), and average response times of approximately 20 minutes per

emergency request.

Our problem statement was to use geo-localized information

about the source of emergency calls from the past to identify hourly

patrol points for the entire fleet of vehicles, allowing officers discre-

tion to change these points based on their ground experience, and al-

lowing administrators flexibility in emphasizing or de-emphasizing

fuel costs while determining patrolling points. For ease of expo-

sition, we restrict our analysis and results below to one district

in the entire state. This restriction does not change our results in

any material way, since the police EMS is also administratively

partitioned by districts, such that each district’s patrol routing is

performed independently.

Emergency police services operate round the clock in the district

in question. A fleet of 25 patrol vehicles move around the district

and when some emergency call comes to the control room, they

attend to the case. These vehicles should ideally always be near

to the crime-prone areas and they should cover as much area as

possible with minimal movement. Movement of these emergency

vehicles incur fuel cost, so moving all the vehicles all the time is

undesirable, though this is the primary optimality criterion several

earlier approaches have sought to optimize [11, 24].

Our partner police EMS made available to us a unique dataset,

containing call records for all calls received by the EMS over the

past three months in the state. The data contains descriptions of

alleged crimes, as assessed by dispatchers, spatial and temporal

coordinates of the call, and additional textual descriptions of events

and sensitive meta-data. As we mention above, this paper focuses

on subset of this data, corresponding to ≈ 200𝑘 calls received in one

district over three months, leading to approximately 100 dispatch

events per day within the district.

They also made available to us the vehicular locations of their

patrolling fleets for the same time duration. Since all their patrolling

vehicles are GPS-enabled, this information is available in real-time

to the EMS.



4 MODEL
To generate the route of the vehicles, vehicles must decide which

direction the vehicle should move in the next timestamp. Patrolling

points are automatically generated from the hourly location of the

vehicles obtained as part of the route. The movement of the vehicle

is directed by the reward it receives from each step. Reward is de-

pendent on two factors. First, if the vehicle reaches a crime zone

quickly, then that will produce a high reward. Second, keeping dis-

tance from other vehicles incur rewards, more the distance, higher

the reward. Below we formalize the model:

We use a Markov Decision Process (MDP) to represent the model.

In Markov Decision Process, the next state is only dependent on

the current state and the action taken at that state. That is, at time

t,for state s, reward r and action a:

𝑃𝑟 {𝑅𝑡+1 = 𝑟, 𝑆𝑡+1 = 𝑠
′
|𝑆𝑡 , 𝐴𝑡 }

= 𝑃𝑟 {𝑅𝑡+1 = 𝑟, 𝑆𝑡+1 = 𝑠
′
|𝑆0, 𝐴0, 𝑅1, ..., 𝑅𝑡 , 𝑆𝑡 , 𝐴𝑡 }

We model our agents, states, actions and rewards as follows:

4.1 Agent
Each vehicle is represented by an agent. So, for 𝑣 vehicles, the agents

will be denoted as, 𝐴𝑔𝑒𝑛𝑡 ∈ {0, 1, 2, ..., 𝑣 − 1}

4.2 State
We divide the entire area into a rectangular grid of size𝑀 × 𝑁 .Let

us consider the state space 𝑆 = {𝑠0, 𝑠1, 𝑠2, ...}, where 𝑠𝑖 ∈ {0, 𝑀} ×
{0, 𝑁 } denoting the location of an agent in the 2-D grid-world.

4.3 Action
For each state s, action 𝑎 ∈ A(𝑠) = {𝐿, 𝑅,𝑈 , 𝐷, 𝑆}, where, L = Left,

R = Right, U = Up, D = Down, S = Same. If taking an action takes

the agent out of the grid-world, then that action is not allowed.

4.4 Reward
We design our reward keeping in mind three factors. First, agents

need to be close to the crime location. Second, agents need to keep

distance among themselves. Third, movement is costly. So the total

reward is defined as,

𝑟 (𝑆𝑡 ) = 𝑟𝑝 (𝑆𝑡 ) + 𝑟 𝑖 (𝑆𝑡 ) −𝐶
Here, 𝑟 (𝑆𝑡 ) is total reward, 𝐶 is a per step movement penalty that

is zero if the agent remains in the same state on the next turn and

a fixed positive value 𝛼 otherwise, 𝑟𝑝 (𝑆𝑡 ) is proximity reward, and

𝑟 𝑖 (𝑆𝑡 ) is instant reward.
Proximity Reward: To promote distance among the agents, we

use this part of the reward

𝑟𝑝 (𝑆𝑡 ) = 𝑒𝛽1×𝑑

. Here, 𝛽1 is a parameter controlling the reward magnitude, and d is

the sum of the euclidean distance of this agent from other agents.

Instant Reward: This part of the reward function is to help the

agent find states which have crime locations.

𝑟 𝑖 (𝑆𝑡 ) = 𝛽𝜏
2
× 𝑟𝑒𝑤𝑎𝑟𝑑 (𝑆𝑡 )

Where, 𝛽2 is a parameter manipulating reward magnitude, 𝜏 is time

elapsed since a call was recorded from state 𝑆𝑡 , and 𝑟𝑒𝑤𝑎𝑟𝑑 (𝑆𝑡−𝜏 )

is the reward available at the state because of a crime committed at

time 𝑡 − 𝜏 . Calls arise randomly from different states. A reward is

available at state 𝑆𝑡 when crime occurs at that state. and the reward

decays exponentially with time to zero because of the effect of 𝛽2.

The decay in the instant reward incentivizes faster responses to

call locations.

4.5 Algorithm

Algorithm 1: Q-learning (off-policy TD control)

Algorithm parameters: step size 𝛼 ∈ (0, 1], 𝜖 = 0.4;

Initialize 𝑄 (𝑠, 𝑎), for all 𝑠 ∈ S, 𝑎 ∈ A(𝑠), arbitrarily;
foreach episode do

Initialize S;

foreach step of episode do
Choose 𝐴 from 𝑆 using policy derived from 𝑄 (e.g.,

ε-greedy);

Take action 𝐴, observe 𝑅, 𝑆 ′;
New 𝑄 (𝑆,𝐴) ←
𝑄 (𝑆,𝐴) + 𝛼 [𝑅 + 𝛾 max𝑎 𝑄 (𝑆 ′, 𝑎) −𝑄 (𝑆,𝐴)];
𝑆 ← 𝑆 ′;

end foreach
end foreach

We use simple Q-Learning to solve the MDP [29], as schematized

in Algorithm 1. Consider 𝑄∗ (𝑠, 𝑎) as the expected value of taking

action a from state s and then following the optimal policy. 𝑄 (𝑠, 𝑎)
denotes the current estimate of 𝑄∗ (𝑠, 𝑎) .

We initialize the Q-table with all 0. We create an (𝑚 × 𝑛) grid-
world to keep track of the environment. We initialize random posi-

tions for different vehicles (0 to 𝑣 − 1).
We choose actions using an 𝜖-greedy strategy. We choose the

value of the 𝜖 as 0.4 by trial and error. If there is a draw in Q-

values, we choose the action uniformly randomly among the drawn

candidates.

We then take the step according to the action chosen. We update

the new location of the agent. Then we calculate the reward.

Finally we update the Q-Table using the following equation:

𝑁𝑒𝑤𝑄 (𝑆,𝐴) ← 𝑄 (𝑆,𝐴) + 𝛼 [𝑅 + 𝛾 max
𝑎

𝑄 (𝑆 ′, 𝑎) −𝑄 (𝑆,𝐴)]

5 SYSTEM DESCRIPTION
The final version of this project will link to a live deployment of the

system we have created. We describe it using text and screenshots.

Figure 1 provides an overview of the application.

Under the hood, we divide the entire area covered by the EMS

into district-wise zones, approximately identified by rectangular

bounding boxes. We create routes for different zones separately by

running the algorithm once for each zone. A web-based application

allows officers to monitor and update vehicle routes. We built the

web-application on the MERN stack to interact with the model. We

use human interaction to improve the routes over time, in the sense

that our algorithm replaces its own selected patrol point with a

human-generated patrol point stored in the database if the human



Figure 1: This figure show an overview of our Application. The markers shows locations of vehicles at different points in time.
The heatmap reports density of call records at different locations in the map.

suggestion is within a certain radius of the algorithmically proposed

point.

We initially generate a route in Python using the algorithm

mentioned above.We save the generated route in the database. Then

we show the route and take user feedback using theweb-application.

The following are the main components of the application.

5.1 Database
We use MongoDB for this application. We have created the follow-

ing collections:

5.1.1 Zones. This collection has the information about all the

zones that the total area is divided into. The total area is divided

into rectangular zones. The fields of this collection are:

• Name: Name of the zone

• Zone: Unique Identifier for Zone

• LeftLat: Latitude of the top left corner

• LeftLng: Longitude of the top left corner

• RightLat: Latitude of the bottom right corner

• RightLng: Longitude of the bottom right corner

5.1.2 Crimes. This collection stores the crimes occurring at differ-

ent locations. The fields in this collection are:

• Type: Describes the type of the crime

• Zone: Zone Id for zone in which the crime occurred.

• Lat: Latitude of crime location.

• Lng: Longitude of crime location.

5.1.3 Vehicles.

• VehicleId: Unique Identification number for each vehicle

• Zone: Zone Id of the vehicle.

• locations: An array containing all the points in the route of

the vehicle

5.1.4 NearestLocations.

• Zone: Zone of the location

• Location: Locations given by the users during interaction in

GeoJSon format.

5.2 Server
We have built the server using NodeJS and Express. The task of the

server is to connect and serve required data from database to the

client. In the server we implement the following main features.

5.2.1 Authentication. We only allow authentic users to see and

update the data. We use token based authentication to authenticate

a user via username and password.

5.2.2 Zone Filtering. Every user is associated with a zone. We filter

all the data based on the zone of the user logged in and show it to

the user. This way we separate concerns of every zone.

5.3 Client
In this part we implement our User Interface using ReactJS and

Bootstrap. The main features of this layer are as follows:

5.3.1 All Vehicles View. In this view we show the current location

of all the vehicles. It helps the control room to redirect the nearest

vehicle to the crime location.

We also provide option to show Heat-Map for crimes occurring

at different locations. It shows the frequency of crime at the entire

zone.



5.3.2 Single Vehicle View. On clicking a vehicle in All Vehicles

View, we redirect to Single Vehicle View. In this view we show the

route for 24 hours. We show what the vehicle’s position will be at

each hour.

User can update each location in the route to a more suitable

location. This location will be saved in the NearestLocations collec-

tion in the database and will be used next time to generate the route,

complementing the algorithm’s judgment with human judgment.

6 EXPERIMENTAL EVALUATION
We present two sets of results using our algorithm. The first set of

results are generated in silico and the second set is generated in a

real-world environment. The in silico evaluation seeks to examine

whether the individual agents are jointly learning policies that are

globally reasonable given the domain. The real-world evaluations

attempt to discern whether the output of the system is realistically

usable by the EMS.

6.1 Simulation Based Results

Figure 2: Left: Real World, Right: Simulation. This figure de-
scribes how crimes in real world gets mapped to the simula-
tion world.

Figure 3: This shows the Setup for all the Experiments. One
agent is shown for illustration. Rewards keep decaying with
time as shown.

For every experiment we use the same setup. We define a grid-

world by taking minimum and maximum latitude and longitude of

the district, defining a rectangular grid-world using this and then

dividing the entire rectangular grid-world into 100𝑚 × 100𝑚 grid

locations.

As mentioned in the model description, we have three set of

rewards. For Instant Reward, we generate the rewards at certain

grid location with a probability proportional to the number of calls

received from that location in the past. To do this, we take real

crime data and map it into the grid-world by assigning the crimes

to a grid that is falls into. Instant rewards decay with each step in

the simulation. For Proximity Reward, we calculate the Euclidean

distance from each of the other vehicles and calculate the reward.

For step penalty we add a penalty(𝛼) as required for every step

other than the same step. Agents train on the grid-world using

multiple training episodes, as is conventional in Q-learning. An

episode terminates after a fixed number of steps.

6.1.1 Training helps agents. In our first experiment, we train the

model for different number of iterations and then run an on-policy

iteration to get the total accumulated rewards in that iteration. We

run this experiment for 25 runs for each training epoch length and

report the mean accumulated reward in Figure 4.

We see that, as expected, with increasing number of iterations

the agents are learning to accumulate higher rewards together. This

in turn means that the agents are learning to adapt the behaviour

that we intend them to adopt via rewards.

Figure 4: Training time vs reward obtained. The positive
trend shows that the training helps the fleet of bots better
achieve the designers’ objectives. Error bars represent 95%
CI measured over 25 experiment runs per x-axis point.

6.1.2 Diminishing returns in reward. In our second experiment, we

measure total accumulated rewards with an increasing number of

agents in the simulation. We run the experiment in the same setup

for every number of agents. We increase the number of agents and

observe the total accumulated rewards. We average the rewards

over 25 runs per experiment condition.



From Figure 5, we observe that with increasing number of agents,

the accumulated reward increases. Importantly, the curve shows

diminishing returns, reflecting the real-world expectation that it is

counter-productive to place too many patrolling units in any given

locality.

Figure 5: Number of Agents vs Reward Accumulated. The
plot shows diminishing returns, suggesting that adding too
many patrolling units is unwise. Error bars represent 95% CI
measured over 25 experiments runs per x-axis point.

6.1.3 Diminishing returns in response time. In our third experiment,

we measure response time to calls with respect to the number of

agents in the system. We use distance of the nearest agent, when a

call occurs, as a proxy for the response time. For this in silico envi-
ronment, we disregard real-world considerations of road locations,

traffic density etc. We observe from Figure 6 that the Response-

Time decreases drastically initially, then the rate of decrease reduces

slowly and the curve flattens, and looks reasonably exponential.

Taken in conjunction with the results reported in Figure 5, these

results clearly indicate the possibility of optimizing the number

of actively patrolling agents without compromising very much on

response time. Thus, these results support the basic premise of our

system - that we can cut down on miles driven without affecting

response times very much.

6.1.4 The step penalty works. Finally, we measure response time

with respect to the distance traversed by all the agents for different

values of step penalty. We observe from Figure 7 that when there is

no step penalty, the agents tend to move more and it decreases with

increasing step penalty. By adding step penalty we can see that, the

fleet as a whole travels less. More importantly, a more static fleet

actually sees lower response times on average.

This observation occurs because of the specific spatial distribu-

tion of call records, likely representative of criminological trends

in areas such as the one covered by our partner EMS. Specifically,

the district under consideration in our analysis consists of multi-

ple urban clusters separated by physical obstacles (a river, railway

lines), and rural clusters dispersed further away. Trying to cover

Figure 6: Number of Agents vs Response-Time. The plot
shows an exponential decline in response time with the in-
troduction of more agents. Error bars represent 95% CI mea-
sured over 25 experiment runs per x-axis point.

Figure 7: Distance Traversed vs Response-Time. When the
step penalty is higher, agents drive around less, and man-
age to have lower response times overall anyway because
the topology of call records in our dataset privileges static
beats over dynamic beats. Error bars represent 95% CI mea-
sured over 25 experiment runs per x-axis point.

the entire district while patrolling is less efficient than staying close

to the urban clusters that report most of the crime.

6.2 Real Environment Results
6.2.1 Qualitative comparison. In this exercise, we compare routes

for a single patrol vehicle generated for three separate areas within

the district by three separate mechanisms - by a human expert, by

a density estimation algorithm, and by our RL-based method. Our

observations are visually summarized in Figure 8.

The first column in Figure 8 documents patrol points marked by a

human expert. We can see that for the sparsely populated rural area



examined in the top row, the human is actually rather inefficient in

placing patrol points - they believe in patrolling along the highway

for the most part, while most of the crime is reported from the rural

cluster a little removed from the highway. The human’s judgments

are better in placing patrol points for the dense urban cluster seen

in the middle row, and the sub-urban area shown in the bottom

row.

The second column shows patrol points generated using DB-

SCAN, an extremely robust and powerful density estimation al-

gorithm for spatial data [12]. DBSCAN does well on the top and

middle rows, but spreads the patrol points too much in the bottom

row, expecting the agent to travel a long distance to patrol two

points in the extreme north of the area for little profit.

The third column shows patrol points generated using our algo-

rithm. Notice that the algorithm places patrol points really close

together for the rural area, widely dispersed for the urban area, and

at an intermediate level of density for the sub-urban area. Adaptive

variation in plotting routes is one of the key advantages of RL-based

approaches over more graph-theoretic approaches, and is evident

in our results.

6.2.2 Actualizing a resource-response trade-off. We chose a small

area within the district and ran 3 experiments with high, middle and

low fuel consumption imperatives for a single vehicle by controlling

the step penalty and show the resultant routes. We visualize our

observations in Figure 9. The key point to note is that, as fuel

consumption becomes increasingly more prioritized, the patrolling

route reduces in length, covering lesser area, and prioritizing the

more likely locations of call origination.

7 DISCUSSION
We present a detailed implementation of decentralized reinforce-

ment learning for solving an interesting real-world variant of the

multi-agent patrol routing problem, with additional first response

ability and fuel efficiency requirements. Our system is trained using

real emergency call records and vehicle position data, and yields

results qualitatively comparable to those generated by a human

route planner. This system is currently being field-tested by the

police department that instigated this project.

Prior work has already acknowledged the value of reinforcement-

learning in solving such problems [5], but uptake has been slow

because of inadequate evaluation and absence of connection with

real data [24]. Recently however, algorithmic patrolling solutions

validated on real data have been reported from Singapore [4] and

Israel [23].

For example, the STREETS program designed for traffic police

patrolling in the Singapore Central Business District was validated

with simulations using traffic volume and traffic violation counts

data as scale parameters [4]. Closer in granularity to our own eval-

uation, the recent system reported by [23] is validated against a

record of traffic accidents for Israeli road networks, cross-referenced

against additional GIS-based and weather information. [23] use this

data to shape the risk calculation component of their patrolling

system, and a separate database of Dallas police cars’ location in

real-time, cross-referencedwithDallas traffic accident data, to shape

their system’s understanding of how effective the presence of police

cars is on preventing car accidents.

The problem we try to solve is distinctly different from the pa-

trolling problem in that patrolling cars are not just meant to deter

crime, but also to act as effective first-responders. Additionally,

our system tries to solve for fuel efficiency in combination with

achieving these objectives. Training the system using real emer-

gency call records data, and comparing predictions of our model

with those of human domain experts, we find that our decentralized

reinforcement learning works reasonably well. Further operational

refinement of the algorithm is naturally possible via improvements

in the design of the reward function to include consideration of

crime severity and immediacy.

The sui generis nature of our practical problem statement pre-

vents a comparisonwithmore sophisticated algorithmic approaches

than density-based assignment, which we acknowledge as a limita-

tion of this paper. Since this system is actually meant for deploy-

ment, we expect results from an ongoing field test by the police

department to yield further evidence of it’s value.

ACKNOWLEDGMENTS
We acknowledge sustained and intensive assistance from the police

emergency management system we are working with for develop-

ing this system.

REFERENCES
[1] Alessandro Almeida, Geber Ramalho, Hugo Santana, Patrícia Tedesco, Talita

Menezes, Vincent Corruble, and Yann Chevaleyre. 2004. Recent advances on

multi-agent patrolling. In Brazilian Symposium on Artificial Intelligence. Springer,
474–483.

[2] Daniel S Bernstein, Robert Givan, Neil Immerman, and Shlomo Zilberstein. 2002.

The complexity of decentralized control of Markov decision processes. Mathe-
matics of operations research 27, 4 (2002), 819–840.

[3] Craig Boutilier. 1996. Planning, learning and coordination in multiagent decision

processes. In Proceedings of the 6th conference on Theoretical aspects of rationality
and knowledge. 195–210.

[4] Matthew Brown, Sandhya Saisubramanian, Pradeep Varakantham, and Milind

Tambe. 2014. Streets: game-theoretic traffic patrolling with exploration and

exploitation. (2014).

[5] Huanfa Chen, Tao Cheng, and Sarah Wise. 2017. Developing an online coopera-

tive police patrol routing strategy. Computers, Environment and Urban Systems
62 (2017), 19–29.

[6] Caroline Claus and Craig Boutilier. 1998. The dynamics of reinforcement learning

in cooperative multiagent systems. AAAI/IAAI 1998, 746-752 (1998), 2.
[7] Robert H Crites and Andrew G Barto. 1998. Elevator group control using multiple

reinforcement learning agents. Machine learning 33, 2-3 (1998), 235–262.

[8] Reginald Dewil, Pieter Vansteenwegen, Dirk Cattrysse, andDirk VanOudheusden.

2015. A minimum cost network flow model for the maximum covering and patrol

routing problem. European Journal of Operational Research 247, 1 (2015), 27–36.

[9] Maite Dewinter, Christophe Vandeviver, Tom Vander Beken, and Frank Witlox.

2020. Analysing the Police Patrol Routing Problem: A Review. ISPRS International
Journal of Geo-Information 9, 3 (2020), 157.

[10] John E Eck and Ronald V Clarke. 2019. Situational Crime Prevention: Theory,

Practice and Evidence. In Handbook on Crime and Deviance. Springer, 355–376.
[11] Yehuda Elmaliach, Noa Agmon, and Gal A Kaminka. 2009. Multi-robot area patrol

under frequency constraints. Annals of Mathematics and Artificial Intelligence 57,
3-4 (2009), 293–320.

[12] Martin Ester, Hans-Peter Kriegel, Jörg Sander, Xiaowei Xu, et al. 1996. A density-

based algorithm for discovering clusters in large spatial databases with noise.. In

Kdd, Vol. 96. 226–231.
[13] James Guo Ming Fu and Marcelo H Ang. 2009. Probabilistic ants (pants) in

multi-agent patrolling. In 2009 IEEE/ASME International Conference on Advanced
Intelligent Mechatronics. IEEE, 1371–1376.

[14] Caroline J Jagtenberg, Sandjai Bhulai, and Robert D van der Mei. 2015. An

efficient heuristic for real-time ambulance redeployment. Operations Research
for Health Care 4 (2015), 27–35.

[15] Christopher S Koper. 1995. Just enough police presence: Reducing crime and

disorderly behavior by optimizing patrol time in crime hot spots. Justice quarterly
12, 4 (1995), 649–672.



Figure 8: This shows the three Methods of Patrolling point generation. Left: Manual, Middle: DBSCAN, Right: Our Algorithm

(a) Low fuel use restriction. Route length =
9.5kms

(b) Medium fuel use restriction. Route
length = 7.8kms

(c) Heavy fuel use restriction. Route length
= 4.5kms

Figure 9: Visualizing a resource-response time trade-off in a real-world scenario

[16] Henry CW Lau, George TS Ho, Yi Zhao, and WT Hon. 2010. Optimizing patrol

force deployment using a genetic algorithm. Expert Systems with Applications 37,
12 (2010), 8148–8154.

[17] Martin Lauer and Martin Riedmiller. 2000. An algorithm for distributed rein-

forcement learning in cooperative multi-agent systems. In In Proceedings of the
Seventeenth International Conference on Machine Learning. Citeseer.

[18] Martin Lauer and Martin Riedmiller. 2004. Reinforcement learning for stochastic

cooperative multi-agent systems. In Proceedings of the Third International Joint
Conference on Autonomous Agents and Multiagent Systems-Volume 3. Citeseer,
1516–1517.

[19] Laëtitia Matignon, Guillaume J Laurent, and Nadine Le Fort-Piat. 2007. Hysteretic

q-learning: an algorithm for decentralized reinforcement learning in cooperative

multi-agent teams. In 2007 IEEE/RSJ International Conference on Intelligent Robots
and Systems. IEEE, 64–69.

[20] Stephen L Percy. 1980. Response time and citizen evaluation of police. Journal of
Police Science and Administration 8, 1 (1980), 75–86.

[21] Jerry H Ratcliffe, Travis Taniguchi, Elizabeth R Groff, and Jennifer D Wood. 2011.

The Philadelphia foot patrol experiment: A randomized controlled trial of police

patrol effectiveness in violent crime hotspots. Criminology 49, 3 (2011), 795–831.

[22] Danilo Reis, Adriano Melo, André LV Coelho, and Vasco Furtado. 2006. GAPatrol:

An evolutionary multiagent approach for the automatic definition of hotspots

and patrol routes. In Advances in Artificial Intelligence-IBERAMIA-SBIA 2006.
Springer, 118–127.

[23] Ariel Rosenfeld, Oleg Maksimov, and Sarit Kraus. 2020. When security games

hit traffic: A deployed optimal traffic enforcement system. Artificial Intelligence
289 (2020), 103381.

[24] Hugo Santana, Geber Ramalho, Vincent Corruble, and Bohdana Ratitch. 2004.

Multi-agent patrolling with reinforcement learning. In Proceedings of the Third
International Joint Conference on Autonomous Agents and Multiagent Systems-
Volume 3. 1122–1129.

[25] Lawrence W Sherman and David Weisburd. 1995. General deterrent effects of

police patrol in crime “hot spots”: A randomized, controlled trial. Justice quarterly



12, 4 (1995), 625–648.

[26] Ruben Stranders, E Munoz De Cote, Alex Rogers, and Nicholas R Jennings. 2013.

Near-optimal continuous patrolling with teams of mobile information gathering

agents. Artificial intelligence 195 (2013), 63–105.
[27] Richard S Sutton and Andrew G Barto. 2018. Reinforcement learning: An intro-

duction. MIT press.

[28] Jason Tsai, Zhengyu Yin, Jun-young Kwak, David Kempe, Christopher Kiek-

intveld, and Milind Tambe. 2010. Urban security: Game-theoretic resource al-

location in networked physical domains. In National Conference on Artificial

Intelligence (AAAI). Citeseer, 881–886.
[29] Christopher JCH Watkins and Peter Dayan. 1992. Q-learning. Machine learning

8, 3-4 (1992), 279–292.

[30] Chongjie Zhang, Victor R Lesser, and Sherief Abdallah. 2010. Self-organization for

coordinating decentralized reinforcement learning.. In AAMAS, Vol. 10. 739–746.
[31] Shanjiang Zhu, Woon Kim, Gang-Len Chang, and Steve Rochon. 2014. Design

and evaluation of operational strategies for deploying emergency response teams:

Dispatching or patrolling. Journal of Transportation Engineering 140, 6 (2014),

04014021.


	Abstract
	1 Introduction
	2 Decentralized reinforcement learning for multi-agent patrol route planning
	3 Implementation
	4 Model
	4.1 Agent
	4.2 State
	4.3 Action
	4.4 Reward
	4.5 Algorithm

	5 System Description
	5.1 Database
	5.2 Server
	5.3 Client

	6 Experimental Evaluation
	6.1 Simulation Based Results
	6.2 Real Environment Results

	7 Discussion
	Acknowledgments
	References

